= ? \infty -\infty = \ ?

Calculus Level 3

Evaluate the following

lim t ( 1 t 1 1 x d x 1 t 1 x d x ) = ? \large \lim_{t \to \infty} \left ( \int_{\frac{1}{t}}^1{\frac{1}{x}\,dx} - \int_1^t{\frac{1}{x}\,dx} \right )=\ ?

\infty Finite but cannot be determined. 1 -\infty 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The answer is in the topic of the question. lol

Mrudul Aluri
Jul 28, 2017

lim t ( 1 t 1 1 x d x 1 t 1 x d x ) \lim_{t \to \infty} \left ( \int_{\frac{1}{t}}^1{\frac{1}{x}\,dx} - \int_1^t{\frac{1}{x}\,dx} \right )

= lim t ( ln ( x ) 1 t 1 ln ( x ) 1 t ) = lim t ( ln ( 1 ) ln ( 1 t ) ln ( t ) + ln ( 1 ) ) = lim t ( ln ( t ) ln ( t ) ) lim t ( 0 ) = 0 = \displaystyle \lim_{t \to \infty} \left(\ln(x)\bigg|_{\frac{1}{t}}^1 - \ln(x)\bigg|_1^t \right) \\ = \displaystyle \lim_{t \to \infty} \left(\ln(1)-\ln\left(\frac{1}{t}\right) - \ln(t) + \ln(1) \right) \\ = \displaystyle \lim_{t \to \infty} \left (\ln(t) - \ln(t)\right) \\ \implies \displaystyle \lim_{t \to \infty} (0) = \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...