\infty\sum (ii)

Calculus Level 2

G i v e n t h e i n f i n i t e s u m : \small\mathrm{Given\ the\ infinite\ sum:} S = 1 + 2 2 + 1 2 3 + 1 + 3 2 + 1 3 3 + 1 + 4 2 + 1 4 3 + 1 \small{S= 1+\frac{2^2+1}{2^3+1}+\frac{3^2+1}{3^3+1}+\frac{4^2+1}{4^3+1}\cdots}

W h a t c a n w e s a y a b o u t t h i s s u m ? \small\mathrm{What\ can\ we\ say\ about\ this\ sum?}

R u l e : S o l v e i t w i t h o u t u s i n g t h e c o m p a r i s o n t e s t \small\mathrm{\mathbf{Rule}: Solve\ it\ without\ using\ the\ comparison\ test}

Y e s ( W r i t e y o u r s o l u t i o n ) \small\mathrm{Yes\ (Write\ your\ solution)} M a y b e ? ( R e a l l y ? ) \small\mathrm{Maybe?\ (Really?)} W h a t ? ( S e e h o w i t s o l v e s ) \small\mathrm{What?\ (See\ how\ it\ solves)} N o ? ( T r y i t ! ) \small\mathrm{No?\ (Try\ it!)}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Richard Polak
Jan 18, 2015

Even without using comparison test, we can grasp that the series behaves like the harmonic series. Thus, we can try Cauchy's condensation test (which is used to prove that the harmonic series diverges).

S = 1 n 2 + 1 n 3 + 1 d i v e r g e s i f 1 2 n ( 2 n ) 2 + 1 ( 2 n ) 3 + 1 d i v e r g e s S=\sum_{1}^{\infty}\frac{n^2+1}{n^3+1} \ \ diverges \ if \ \ \sum_{1}^{\infty} 2^n\frac{(2^n)^2+1}{(2^n)^3+1} \ \ diverges

The general term of this series is bigger than 1 for all values of n: 2 n ( 2 n ) 2 + 1 ( 2 n ) 3 + 1 = 2 3 n + 2 n 2 3 n + 1 > 1 2^n\frac{(2^n)^2+1}{(2^n)^3+1} = \frac{2^{3n}+2^n}{2^{3n}+1} > 1

And 1+1+1+1+1... diverges so S diverges.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...