Initial digit

Algebra Level 3

Find the smallest positive integer whose left-most digit is 6 such that the integer formed by deleting this 6 is 1 25 \frac{1}{25} of the original number.


The answer is 625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the positive integer be N = 6 × 1 0 m + n N = 6\times 10^m+n , where m m and n n are positive integers. Then we have:

6 × 1 0 m + n 6 × 1 0 m = 6 × 1 0 m + n 25 25 n = 6 × 1 0 m + n 24 n = 6 × 1 0 m n = 6 × 1 0 m 24 = 1 0 m 4 \begin{aligned} 6\times10^m + n - 6 \times 10^m & = \frac {6\times10^m + n}{25} \\ 25 n & = 6\times10^m + n \\ 24 n & = 6\times10^m \\ \implies n & = \frac {6\times10^m}{24} = \frac {10^m}4 \end{aligned}

For n n to be an integer, the smallest m = 2 m=2 and n = 100 4 = 25 n = \dfrac {100}4 = 25 and N = 6 × 1 0 2 + 25 = 625 N = 6 \times 10^2 + 25 = \boxed{625} .

Skye Rzym
May 4, 2017

Let N = 1 0 x 6 + y N=10^{x} \cdot 6 + y , where y < 1 0 x y<10^{x} . And then, we know that y = 1 25 N y=\frac{1}{25}N y = 1 25 ( 1 0 x 6 + y ) y=\frac{1}{25}(10^{x} \cdot 6 + y) 25 y = 1 0 x 6 + y 25y=10^{x} \cdot 6 + y 24 y = 1 0 x 6 24y=10^{x} \cdot 6 4 y = 1 0 x 4y=10^{x} y = 2 x 2 5 x y=2^{x-2} \cdot 5^{x} 1 0 x 6 + y = 1 0 x 6 + 2 x 2 5 x 10^{x} \cdot 6 + y=10^{x} \cdot 6 + 2^{x-2} \cdot 5^{x} Then, we'll get minimal value of y y if x x is also minimal. That is, x = 2 x=2 . And then we get y = 5 2 = 25 y=5^{2}=25 and y < 1 0 2 = 100 y<10^{2}=100

So, the number is 625 \boxed{625}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...