Ink on Sequences #4

Calculus Level 4

For every positive integer n n , a sequence { a n } \{a_n\} satisfies:

( a n + 2 a n + 1 ) n 2 + ( 2 a n + 2 3 a n + 1 + a n ) n + ( a n + 1 + a n ) = 0 (a_{n+2}-a_{n+1})n^2+(2a_{n+2}-3a_{n+1}+a_n)n+(-a_{n+1}+a_n)=0

Given that a 1 = 49 a_1=49 and a 2 = 121 a_2=121 , find the value of lim n a n \displaystyle \lim_{n\rightarrow\infty} a_n .


This problem is a part of <Inconsequences!> series .


The answer is 193.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 29, 2017

From the original condition, we see that

( a n + 2 a n + 1 ) n 2 + 2 ( a n + 2 a n + 1 ) n + ( a n + 1 + a n ) n + ( a n + 1 + a n ) = 0 ( n 2 + 2 n ) ( a n + 2 a n + 1 ) = ( n + 1 ) ( a n + 1 a n ) (a_{n+2}-a_{n+1})n^2+2(a_{n+2}-a_{n+1})n+(-a_{n+1}+a_n)n+(-a_{n+1}+a_n)=0 \\ (n^2+2n)(a_{n+2}-a_{n+1})=(n+1)(a_{n+1}-a_n)


Note that a 2 a 1 a_2\neq a_1 .

If a n + 1 a n a_{n+1}\neq a_n ,

( n 2 + 2 n ) ( a n + 2 a n + 1 ) = ( n + 1 ) ( a n + 1 a n ) 0 (n^2+2n)(a_{n+2}-a_{n+1})=(n+1)(a_{n+1}-a_n)\neq0 .

a n + 2 a n + 1 \therefore~a_{n+2}\neq a_{n+1} .

Therefore, using above induction, we conclude that for every positive integer n n , a n + 1 a n a_{n+1}\neq a_n .


Then we can transform the equation.

a n + 2 a n + 1 a n + 1 a n = n + 1 n ( n + 2 ) k = 1 n 1 a k + 2 a k + 1 a k + 1 a k = k = 1 n 1 k + 1 k ( k + 2 ) \begin{aligned} \frac{a_{n+2}-a_{n+1}}{a_{n+1}-a_n} & =\frac{n+1}{n(n+2)} \\ \prod_{k=1}^{n-1} \frac{a_{k+2}-a_{k+1}}{a_{k+1}-a_k} & =\prod_{k=1}^{n-1} \frac{k+1}{k(k+2)} \end{aligned}

Note that n n must be larger than or equal to 2 2 .

a n + 1 a n a 2 a 1 = n ! ( n 1 ) ! ( n + 1 ) ! 2 ( n 2 ) a n + 1 a n = 144 n ( n + 1 ) ! ( n 2 ) \begin{aligned} \frac{a_{n+1}-a_n}{a_2-a_1}&=\frac{n!}{(n-1)!\cdot\dfrac{(n+1)!}{2}} \quad (n\geq2)\\ a_{n+1}-a_n&=144\cdot\frac{n}{(n+1)!} \quad (n\geq2) \end{aligned}


Now let's get some sum.

k = 2 n 1 ( a k + 1 a k ) = 144 k = 2 n 1 k ( k + 1 ) ! ( n 3 ) a n a 2 = 144 k = 2 n 1 ( 1 k ! 1 ( k + 1 ) ! ) ( n 3 ) a n = 121 + 144 ( 1 2 1 n ! ) ( n 3 ) \begin{aligned} \sum_{k=2}^{n-1} (a_{k+1}-a_k)&=144\sum_{k=2}^{n-1} \frac{k}{(k+1)!} \quad (n\geq3) \\ a_n-a_2&=144\sum_{k=2}^{n-1} \left(\frac{1}{k!}-\frac{1}{(k+1)!}\right) \quad (n\geq3) \\ a_n&=121+144\left(\frac{1}{2}-\frac{1}{n!}\right) \quad (n\geq3) \end{aligned}


So we've got a n a_n .

Then let's punch that into the limit we're trying to get a value of.

lim n a n = lim n ( 121 + 144 ( 1 2 1 n ! ) ) = 121 + 72 = 193 \lim_{n\rightarrow\infty} a_n=\lim_{n\rightarrow\infty} \left(121+144\left(\frac{1}{2}-\frac{1}{n!}\right)\right)=121+72=\boxed{193}


The answer is already found, but I'd like to elaborate more.

Substitute n = 1 , 2 n=1,~2 to a n = 121 + 144 ( 1 2 1 n ! ) a_n=121+144\left(\frac{1}{2}-\frac{1}{n!}\right) .

And we see that the equation holds.

Therefore, for every positive integer n n ,

a n = 121 + 144 ( 1 2 1 n ! ) a_n=121+144\left(\frac{1}{2}-\frac{1}{n!}\right)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...