Ink on Sequences #5

Calculus Level 4

A sequence { a n } \{a_n\} is an arithmetic progression .

Given that a 2016 = 2016 a_{2016}=\sqrt{2016} and a 2017 = 2017 , a_{2017}=\sqrt{2017}, find the value of:

lim n ( a 2 + a 4 + a 6 + + a 2 n a 1 + a 3 + a 5 + + a 2 n 1 ) 2 2017 2016 \large \lim_{n\to\infty} \dfrac{\left(\sqrt{a_2+a_4+a_6+~\cdots~+a_{2n}}-\sqrt{a_1+a_3+a_5+~\cdots~+a_{2n-1}}\right)^2}{\sqrt{2017}-\sqrt{2016}}


This problem is a part of <Inconsequences!> series .


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Aug 26, 2017

Let a n = d n + k . a_n=dn+k.

Then a 2 n = 2 d n + k , a_{2n}=2dn+k, which, for some real number p , p, leads to a 2 + a 4 + a 6 + + a 2 n = d n 2 + p n . a_2+a_4+a_6+~\cdots~+a_{2n}=dn^2+pn.

We can also see that a 2 n 1 = 2 d n 2 d + k = 2 d n + l , a_{2n-1}=2dn-2d+k=2dn+l, which, for some real number q , q, leads to a 1 + a 3 + a 5 + + a 2 n 1 = d n 2 + q n . a_1+a_3+a_5+~\cdots~+a_{2n-1}=dn^2+qn.

Subtract a 1 + a 3 + a 5 + + a 2 n 1 = d n 2 + q n a_1+a_3+a_5+~\cdots~+a_{2n-1}=dn^2+qn from a 2 + a 4 + a 6 + + a 2 n = d n 2 + p n a_2+a_4+a_6+~\cdots~+a_{2n}=dn^2+pn and the result is:

d n = ( p q ) n . dn=(p-q)n. So p d = q , p-d=q, which leads to a 1 + a 3 + a 5 + + a 2 n 1 = d n 2 + ( p d ) n . a_1+a_3+a_5+~\cdots~+a_{2n-1}=dn^2+(p-d)n.


lim n ( a 2 + a 4 + a 6 + + a 2 n a 1 + a 3 + a 5 + + a 2 n 1 ) = lim n ( d n 2 + p n d n 2 + ( p d ) n ) = lim n ( d n 2 + p n + q d n 2 + ( p d ) n + q ) ( d n 2 + p n + q + d n 2 + ( p d ) n + q ) d n 2 + p n + q + d n 2 + ( p d ) n + q = lim n d n 2 + p n d n 2 ( p d ) n 2 d n = lim n d n 2 d n = d 2 \begin{aligned} &\lim_{n\to\infty} \left(\sqrt{a_2+a_4+a_6+~\cdots~+a_{2n}}-\sqrt{a_1+a_3+a_5+~\cdots~+a_{2n-1}}\right) \\ &=\lim_{n\to\infty} \left(\sqrt{dn^2+pn}-\sqrt{dn^2+(p-d)n}\right) \\ &=\lim_{n\to\infty} \frac{\left(\sqrt{dn^2+pn+q}-\sqrt{dn^2+(p-d)n+q}\right)\left(\sqrt{dn^2+pn+q}+\sqrt{dn^2+(p-d)n+q}\right)}{\sqrt{dn^2+pn+q}+\sqrt{dn^2+(p-d)n+q}} \\ &=\lim_{n\to\infty} \frac{dn^2+pn-dn^2-(p-d)n}{2\sqrt{d}n} \\ &=\lim_{n\to\infty} \frac{dn}{2\sqrt{d}n} \\ &=\frac{\sqrt{d}}{2} \end{aligned}

In this problem, 2017 2016 = d . \sqrt{2017}-\sqrt{2016}=d.

Therefore, the value we're trying to get is ( d 2 ) 2 d = 1 4 . \dfrac{\left(\dfrac{\sqrt{d}}{2}\right)^2}{d}=\boxed{\dfrac{1}{4}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...