Ink on Sequences #6

Algebra Level 5

Let { a n } \{a_n\} be a sequence of positive numbers satisfying

{ a 1 = 1 a 2017 = 2017 a n + 1 = a n 2 a n 1 + 2 a n a n 1 + 1 for n 2 \large \begin{cases} a_1=1 \\ a_{2017}=2017 \\ a_{n+1}=\dfrac{a_n^2-a_{n-1}+2a_n}{a_{n-1}+1} & \text{for } n \ge 2 \end{cases}

The value of a 2 a_2 can be expressed as α + β 2 + γ ϵ δ \alpha+\beta\sqrt{2}+\gamma\sqrt[\delta]{\epsilon} , where α \alpha , β \beta , γ \gamma , δ \delta , and ϵ \epsilon are integers and ϵ \epsilon is as small as possible.

Find the value of α + β + γ + δ + ϵ \alpha+\beta+\gamma+\delta+\epsilon .


This problem is a part of <Inconsequences!> series .


The answer is 3026.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 14, 2017

Similar solution with @H.M. 유 's

a n + 1 = a n 2 a n 1 + 2 a n a n 1 + 1 = a n 2 + 2 a n + 1 a n 1 1 a n 1 + 1 = ( a n + 1 ) 2 ( a n 1 + 1 ) a n 1 + 1 = ( a n + 1 ) 2 a n 1 + 1 1 a n + 1 + 1 = ( a n + 1 ) 2 a n 1 + 1 Let b k = a k + 1 b n + 1 = b n 2 b n 1 b n 1 b n + 1 = b n 2 \begin{aligned} a_{n+1} & = \frac {a_n^2 - a_{n-1}+2a_n}{a_{n-1}+1} \\ & = \frac {a_n^2+2a_n {\color{#3D99F6}+ 1}-a_{n-1}\color{#3D99F6}-1}{a_{n-1}+1} \\ & = \frac {(a_n+1)^2 -(a_{n-1}+1)}{a_{n-1}+1} \\ & = \frac {(a_n+1)^2}{a_{n-1}+1} - 1 \\ \implies a_{n+1} + 1 & = \frac {(a_n+1)^2}{a_{n-1}+1} & \small \color{#3D99F6} \text{Let }b_k = a_k + 1 \\ b_{n+1} & = \frac {b_n^2}{b_{n-1}} \\ \implies b_{n-1}b_{n+1} & = b_n^2 \end{aligned}

This means that { b n } \{b_n\} is a geometric progression and therefore,

b 2017 = b 1 r 2017 1 where r is the common ratio. a 2017 + 1 = ( a 1 + 1 ) r 2016 2018 = 2 r 2016 r = 1009 2016 b 2 = b 1 r = 2 1009 2016 a 2 = 1 + 2 1009 2016 \begin{aligned} b_{2017} & = b_1r^{2017-1} & \small \color{#3D99F6} \text{where }r \text{ is the common ratio.} \\ a_{2017} + 1 & = (a_1 + 1)r^{2016} \\ 2018 & = 2r^{2016} \\ \implies r & = \sqrt [2016]{1009} \\ b_2 & = b_1r = 2 \sqrt[2016]{1009} \\ \implies a_2 & = -1 + 2 \sqrt[2016]{1009} \end{aligned}

α + β + γ + δ + ϵ = 1 + 0 + 2 + 2016 + 1009 = 3026 \implies \alpha + \beta + \gamma + \delta + \epsilon = -1+0+2+2016+1009 = \boxed{3026}

Boi (보이)
Sep 14, 2017

Let b n = a n + 1. b_n=a_n+1.

Then,

a n + 1 = ( a n + 1 ) 2 a n 1 1 a n 1 + 1 b n + 1 1 = b n 2 b n 1 b n 1 b n + 1 = b n 2 b n 1 b n 1 b n + 1 = b n 2 \begin{aligned} a_{n+1} &=\dfrac{(a_n+1)^2-a_{n-1}-1}{a_{n-1}+1} \\ b_{n+1}-1 &=\dfrac{{b_n}^2-b_{n-1}}{b_{n-1}} \\ b_{n+1} &= \dfrac{{b_n}^2}{b_{n-1}} \\ \therefore~b_{n-1}b_{n+1} &={b_n}^2 \end{aligned}

This shows that b n b_n is a geometric progression .


b 1 = 2 b_1=2 and b 2017 = 2018 , b_{2017}=2018, and therefore if we let the common ratio be r , r,

r 2016 = 1009 r^{2016}=1009

r = 1009 2016 . \therefore~r=\sqrt[2016]{1009}.

Then b 2 = 2 1009 2016 . b_2=2\cdot\sqrt[2016]{1009}.

Therefore, a 2 = b 2 1 = 1 + 2 1009 2016 . a_2=b_2-1=-1+2\cdot\sqrt[2016]{1009}.

α + β + γ + δ + ϵ = 1 + 0 + 2 + 2016 + 1009 = 3026 . \alpha+\beta+\gamma+\delta+\epsilon=-1+0+2+2016+1009=\boxed{3026}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...