INMO-2008

Positive integers p p , n n , and y y , with p p being a prime, are such that p n = y 4 + 4 p^n=y^4 + 4 .

Find p + n + y p+n+y .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 26, 2020

We have p n = y 4 + 4 = ( y 2 + 2 ) 2 4 y 2 = ( y 2 + 2 y + 2 ) ( y 2 2 y + 2 ) p^n \; = \; y^4 + 4 \; = \; (y^2 + 2)^2 - 4y^2 \; = \; (y^2 + 2y + 2)(y^2 - 2y + 2) and hence y 2 + 2 y + 2 = p a y^2 + 2y + 2 = p^a . y 2 2 y + 2 = p b y^2 - 2y + 2 = p^b for some 0 b a 0 \le b \le a with a + b = n a+b = n . But then y 2 2 y + 2 y^2 - 2y + 2 divides y 2 + 2 y + 2 y^2 + 2y + 2 , and hence y 2 2 y + 2 y^2 - 2y + 2 divides 4 y 4y . But y 2 2 y + 2 4 y = ( y 3 ) 2 7 > 0 y 6 y^2 - 2y + 2 - 4y \; = \; (y - 3)^2 - 7 \; > \; 0 \hspace{2cm} y \ge 6 so we deduce that 1 y 5 1 \le y \le 5 . It is easy to check that y 4 + 4 y^4 + 4 is only a prime power for 1 y 5 1 \le y \le 5 when y = 1 y=1 . Thus we have y = 1 y=1 , p = 5 p=5 . n = 1 n=1 , so that y + p + n = 7 y+p+n = \boxed{7} .

One hundred percent exactly how I solved

Nitin Kumar - 1 year, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...