Impulse

There is a train that weighs 100kg and is 30m long. And the train starts to gain weight by 5kg/s after it starts moving. If you drag the train that was at rest with a constant force of 75N, what is the speed of the train after 5 seconds? (ignore the friction)

3m/s 3.347m/s 2.99m/s 3.147m/s

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Ahn
Sep 15, 2018
  • F = d p d t = d ( m v ) d t = d m d t v + d v d t m = 5 v + d v d t ( m 0 + 5 t ) F=\frac { dp }{ dt } =\frac { d(mv) }{ dt } =\frac { dm }{ dt } v+\frac { dv }{ dt } m=5v+\frac { dv }{ dt } ({ m }_{ 0 }+5t)
  • d v d t = F 5 v m 0 + 5 t \frac { dv }{ dt } =\frac { F-5v }{ { m }_{ 0 }+5t } , d t m 0 + 5 t = d v F 5 v \frac { dt }{ { m }_{ 0 }+5t } =\frac { dv }{ F-5v }
  • 0 5 d t m 0 + 5 t = 0 v d v F 5 v \int _{ 0 }^{ 5 }{ \frac { dt }{ { m }_{ 0 }+5t } } =\int _{ 0 }^{ v }{ \frac { dv }{ F-5v } }
  • 1 5 l n ( m 0 + 25 m 0 ) = 1 5 l n ( F 5 v F ) \frac { 1 }{ 5 } ln(\frac { { m }_{ 0 }+25 }{ { m }_{ 0 } } )=-\frac { 1 }{ 5 } ln(\frac { F-5v }{ F } )
  • m 0 + 25 m 0 = F F 5 v \frac { { m }_{ 0 }+25 }{ { m }_{ 0 } } =\frac { F }{ F-5v }
  • 5 + 25 5 = 75 75 5 v \frac { 5+25 }{ 5 } =\frac { 75 }{ 75-5v }
  • v = 3 m / s \therefore v=3m/s

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...