Inradii Among Us

Geometry Level 5

In the semicircle of radius 1 1 , each of the 6 6 triangles shares the common vertex A 0 A_0 . The measurement of A 1 A 0 A 2 \angle A_1A_0A_2 , A 2 A 0 A 3 \angle A_2A_0A_3 , A 3 A 0 A 4 \angle A_3A_0A_4 , A 4 A 0 A 5 \angle A_4A_0A_5 , A 5 A 0 A 6 \angle A_5A_0A_6 and A 6 A 0 A 7 \angle A_6A_0A_7 is π 14 \dfrac{\pi}{14} radians.

If the area sum of all 6 6 green incircles is S S , find the digit sum of 1 0 14 S \lfloor 10^{14} S\rfloor .


Inspiration. (And among others!)


The answer is 56.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yuriy Kazakov
Apr 20, 2021

The Equation exist for triangle

r R = c o s α + c o s β + c o s γ 1 \frac{r}{R}=cos{\alpha}+cos{\beta}+cos{\gamma}-1

r r - inradius, R R - outradius.

Here 6 triangles with R = 1 R=1 and sets of angles α i , β i , γ i {\alpha}_i,{\beta}_i,{\gamma}_i

1. π 14 , 6 π 14 , 7 π 14 1. \frac{\pi}{14}, \frac{6\pi}{14}, \frac{7\pi}{14}

2. π 14 , 5 π 14 , 8 π 14 2. \frac{\pi}{14}, \frac{5\pi}{14}, \frac{8\pi}{14}

3. π 14 , 4 π 14 , 9 π 14 3. \frac{\pi}{14}, \frac{4\pi}{14}, \frac{9\pi}{14}

4. π 14 , 3 π 14 , 10 π 14 4. \frac{\pi}{14}, \frac{3\pi}{14}, \frac{10\pi}{14}

5. π 14 , 2 π 14 , 11 π 14 5. \frac{\pi}{14}, \frac{2\pi}{14}, \frac{11\pi}{14}

6. π 14 , π 14 , 12 π 14 6. \frac{\pi}{14}, \frac{\pi}{14}, \frac{12\pi}{14}

i = 1 6 S i = π i = 1 6 r i 2 = π i = 1 6 ( c o s α i + c o s β i + c o s γ i 1 ) 2 \sum_{i=1}^6 {S_{i} }={\pi}\sum_{i=1}^6{r_i}^2 = {\pi} \sum_{i=1}^6 (cos{\alpha_{i}}+cos{\beta_{i}}+cos{\gamma_{i}}-1)^2

Use WolframeAlpha to calculate the sum - answer

0.40765528133453.... 0.40765528133453....

56 56

And another way with Python

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
python

from sympy import *

radius = 1  # arrange for side length = 1
center = Point(0, 0)  # centered at Origin
p = Polygon(center, radius, n=14)
side = trigsimp(p.sides[0].length)
#assert (isclose(side, 1, abs_tol=1e-20))
def Scircle(A,B,C):
  S=Triangle(A,B,C).area
  a=A.distance(B)
  b=B.distance(C)
  c=C.distance(A)
  R=(2*S/(a+b+c))**2
  return R

A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14 = p.vertices
s1=N(Scircle(A8,A1,A2),18)
s2=N(Scircle(A8,A2,A3),18)
s3=N(Scircle(A8,A3,A4),18)
s4=N(Scircle(A8,A4,A5),18)
s5=N(Scircle(A8,A5,A6),18)
s6=N(Scircle(A8,A6,A7),18)
summa = N((s1+s2+s3+s4+s5+s6)*pi,18)
st_summa= str(summa)
digits =st_summa[2:16]
print(digits)
print(sum(list(map(int,digits))))

40765528133453
56

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...