Inradius known, side unknown

Geometry Level 2

In A B C \triangle ABC , A C = 7 \overline{AC} = 7 and A C B = 6 0 \angle ACB = 60^{\circ} . Find the length of B C \overline{BC} so that the inradius of A B C \triangle ABC is 2 2 .


The answer is 6.859.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Sep 10, 2020

The area of A B C \triangle ABC is A = 1 2 7 x sin 60 ° = 7 3 4 x A = \frac{1}{2} \cdot 7 \cdot x \cdot \sin 60° = \frac{7\sqrt{3}}{4}x .

By the law of cosines on A B C \triangle ABC , A B = x 2 + 7 2 2 x 7 cos 60 ° = x 2 7 x + 49 AB = \sqrt{x^2 + 7^2 - 2 \cdot x \cdot 7 \cdot \cos 60°} = \sqrt{x^2 - 7x + 49} .

The semiperimeter of A B C \triangle ABC is therefore s = 1 2 ( x + 7 + x 2 7 x + 49 ) s = \frac{1}{2}(x + 7 + \sqrt{x^2 - 7x + 49}) .

The relationship between the area A A , the inradius r r , and the semiperimeter s s is A = r s A = rs . Therefore, 7 3 4 x = 2 1 2 ( x + 7 + x 2 7 x + 49 ) \frac{7\sqrt{3}}{4}x = 2 \cdot \frac{1}{2}(x + 7 + \sqrt{x^2 - 7x + 49}) , which solves to x = 112 + 264 3 83 6.859 x = \frac{112 + 264\sqrt{3}}{83} \approx \boxed{6.859} .

Chew-Seong Cheong
Sep 11, 2020

Let B C = a BC=a , A C = b = 7 AC=b=7 , and A B = c AB=c . By cosine rule , we have c 2 = a 2 + b 2 2 a b cos 6 0 = a 2 7 a + 49 c^2 = a^2 + b^2 - 2 ab \cos 60^\circ = a^2 - 7a + 49 . The area of A B C \triangle ABC , [ A B C ] = 1 2 a b sin 6 0 = 7 3 4 a [ABC] = \dfrac 12 ab \sin 60^\circ = \dfrac {7\sqrt 3}4a . And [ A B C ] = r 2 ( a + b + c ) = a + 7 + c [ABC] = \dfrac r2 (a+b+c) = a+7+c , where r = 2 r=2 is the inradius. Therefore,

7 3 4 a = a + 7 + c ( 7 3 4 1 ) a 7 = c ( ( 7 3 4 1 ) a 7 ) 2 = c 2 = a 2 7 a + 49 ( ( 7 3 4 1 ) 2 1 ) a 2 ( 49 3 2 21 ) a = 0 Since a > 0 a = 49 3 2 21 ( 7 3 4 1 ) 2 1 6.86 \begin{aligned} \frac {7\sqrt 3}4a & = a+7+c \\ \left(\frac {7\sqrt 3}4 - 1\right)a - 7 & = c \\ \left(\left(\frac {7\sqrt 3}4 - 1\right)a - 7\right)^2 & = c^2 = a^2 - 7a + 49 \\ \left(\left(\frac {7\sqrt 3}4 - 1\right)^2 - 1\right)a^2 - \left(\frac {49\sqrt 3}2 - 21\right)a & = 0 & \small \blue{\text{Since } a>0} \\ \implies a & = \frac {\frac {49\sqrt 3}2 - 21}{\left(\frac {7\sqrt 3}4 - 1\right)^2 - 1} \approx \boxed{6.86} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...