Insane Integral

Calculus Level 5

If it is given

x 2 x 6 2 x 5 2 x 4 + 4 x 3 + 3 x 2 4 x + 1 d x = π , \int_{-\infty}^\infty\frac{x^2}{x^6 - 2x^5 - 2x^4 + 4x^3 + 3x^2 - 4x + 1} \; dx=\pi,

then the value of

0 x 8 4 x 6 + 9 x 4 5 x 2 + 1 x 12 10 x 10 + 37 x 8 42 x 6 + 26 x 4 8 x 2 + 1 d x \int_0^{\infty} \frac{x^8 - 4x^6 + 9x^4 - 5x^2 + 1}{x^{12} - 10 x^{10} + 37x^8 - 42x^6 + 26x^4 - 8x^2 + 1}dx

can be expressed as p π q \,\dfrac{p\pi}{q} . Find the value of p 2 + q 2 \,p^2+q^2 .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Gopinath No
Apr 7, 2014

Let

g ( x ) = x 2 x 6 2 x 5 2 x 4 + 4 x 3 + 3 x 2 4 x + 1 f ( x ) = x 8 4 x 6 + 9 x 4 5 x 2 + 1 x 12 10 x 10 + 37 x 8 42 x 6 + 26 x 4 8 x 2 + 1 \displaystyle \begin{aligned} g(x) &= \dfrac{x^{2}}{x^{6} - 2 \, x^{5} - 2 \, x^{4} + 4 \, x^{3} + 3 \, x^{2} - 4 \, x + 1}\\\\ f(x) &= \dfrac{x^{8} - 4 \, x^{6} + 9 \, x^{4} - 5 \, x^{2} + 1}{x^{12} - 10 \, x^{10} + 37 \, x^{8} - 42 \, x^{6} + 26 \, x^{4} - 8 \, x^{2} + 1} \end{aligned}

They are related as

f ( x ) = g ( 1 + x ) + g ( 1 x ) 2 f(x)=\dfrac{g(1+x)+g(1-x)}{2}

0 f ( x ) d x = 1 2 ( 0 g ( x ) d x + 0 g ( x ) d x ) = 1 2 ( 0 g ( x ) d x + 0 g ( x ) d x ) = 1 2 g ( x ) = π 2 \displaystyle \begin{aligned} \therefore \int_0^\infty f(x) \, dx &= \dfrac{1}{2}\left(\int_0^\infty g(x) \, dx+\int_0^\infty g(-x) \, dx\right)\\ &=\dfrac{1}{2}\left(\int_0^\infty g(x) \, dx+\int_{-\infty}^0 g(x) \, dx\right)\\ &=\dfrac{1}{2}\, \int_{-\infty}^\infty g(x)\\ &=\dfrac{\pi}{2} \end{aligned}

Hence, enter 5.

It appeared first in AMM. See the solution using complex analysis by this mathematician: the integral

gopinath no - 7 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...