Insanely Huge Symmetric Polynomial

Algebra Level 5

4 z 11 + 4 z 10 21 z 9 21 z 8 + 17 z 7 + 17 z 6 + 17 z 5 + 17 z 4 21 z 3 21 z 2 + 4 z + 4 = 0 4z^{11}+4z^{10}-21z^9-21z^8+17z^7+17z^6+17z^5+17z^4-21z^3-21z^2+4z+4=0

How many distinct roots does the equation above have?


Similar Problem .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Sky
Apr 3, 2016

The given equation is a Reciprocal Equation \color{#3D99F6}{\text{Reciprocal Equation}} (also called Palindromic Equation \color{#3D99F6}{\text{Palindromic Equation}} ) as Co - efficient of z n = Co - efficient of z 11 i \color{#D61F06}{\text{Co - efficient of} \, z^{n} \, = \, \text{Co - efficient of}\,z^{11-i}} , where i ϵ ( 0 , 1 , 2 , . . , 10 , 11 ) \color{#D61F06}{i \,\,\epsilon \,\,(0,1,2,..,10,11)} . Generally, a palindromic equation of degree n \color{#D61F06}{n} can be reduced to an equation of degree n 2 \color{#D61F06}{\frac{n}{2}} , where n \color{#D61F06}{n} is even, by making a substitution z + 1 z = t \color{#20A900}{z+\frac{1}{z} \,=\, t} . But here n \color{#D61F06}{n} is odd, so we need to perform an additional step of manipulation which is as follows :- 4 z 11 + 4 z 10 21 z 9 21 z 8 + 17 z 7 + 17 z 6 + 17 z 5 + 17 z 4 21 z 3 21 z 2 + 4 z + 4 = 0 ( z + 1 ) ( 4 z 10 21 z 8 + 17 z 6 + 17 z 4 21 z 2 + 4 ) This can be reduced ! = 0 4z^{11}+4z^{10}-21z^9-21z^8+17z^7+17z^6+17z^5+17z^4-21z^3-21z^2+4z+4=0 \implies (z+1)\underbrace{(4z^{10}-21z^{8}+17z^{6}+17z^{4}-21z^{2}+4)}_\text{This can be reduced !}=0 . ( z + 1 ) \color{#20A900}{(z+1)} gives z = 1 \color{magenta}{z=-1} . Now, considering, 4 z 10 21 z 8 + 17 z 6 + 17 z 4 21 z 2 + 4 = 0 \color{#20A900}{4z^{10}-21z^{8}+17z^{6}+17z^{4}-21z^{2}+4=0} . Dividing the entire equation by z 5 \color{#20A900}{z^{5}} and then replacing z + 1 z \color{#20A900}{z+\frac{1}{z}} by t \color{#20A900}{t} , followed by simplification yields :- 4 t 5 41 t 3 + 100 t = 0 t ( t 2 4 ) ( 4 t 2 25 ) = 0 4t^{5}-41t^{3}+100t=0 \implies t(t^{2}-4)(4t^{2}-25)=0 t = 0 , ± 2 , ± 5 2 z + 1 z = 0 , ± 2 , ± 5 2 z = ± i -1 occurs here as well , ± 1 , ± 1 2 , ± 2 \implies t = 0, \,\pm\, 2, \,\pm \,\frac{5}{2} \implies z+\frac{1}{z} = 0,\, \pm \,2, \,\pm \,\frac{5}{2} \implies \color{magenta}{z = \underbrace{\pm\, i}_\text{-1 occurs here as well}, \pm \,1, \pm \,\frac{1}{2}, \pm\, 2 } . So, total number of distinct roots is 8 \color{#3D99F6}{8} . Furthermore, 4 z 11 + 4 z 10 21 z 9 21 z 8 + 17 z 7 + 17 z 6 + 17 z 5 + 17 z 4 21 z 3 21 z 2 + 4 z + 4 = ( x 2 ) ( x 1 ) 2 ( x i ) ( x + i ) ( x + 1 ) 3 ( x + 2 ) ( 2 x 1 ) ( 2 x + 1 ) \boxed {\color{magenta}{4z^{11}+4z^{10}-21z^9-21z^8+17z^7+17z^6+17z^5+17z^4-21z^3-21z^2+4z+4=(x-2)(x-1)^{2}(x-i)(x+i)(x+1)^{3}(x+2)(2x-1)(2x+1)}}

Yes I too did it the same way. Thanks for the solution.

A Former Brilliant Member - 5 years, 2 months ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...