There are 2 circles and a square. The square is inscribed in the larger circle, and the smaller circle is inscribed in the square.
The sum of the area of the larger circle not being enclosed in the square and the area of the square not being enclosed in the smaller circle is equal to the area of the ......
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let the radius of the small circle be O C = r , then the radius of the larger circle O A = r 2 .
The region described is the green and blue together, it is an annulus. The area of this annulus is π ⋅ ( r 2 ) 2 − π ⋅ r 2 = π ⋅ r 2
Which is precisely the area of The smaller circle