Inscribed and Circumscribed Spheres 2

Level pending

Let n n be a positive integer.

Consider a pyramid whose base is a regular 4 n g o n . 4n - gon.

( 1 ) (1) Let V p V_{p} be the volume of the largest pyramid above that can be inscribed in a sphere of radius R R , where V s V_{s} is the volume of the sphere.

( 2 ) (2) Let V s 2 V_{s_2} be the volume of the largest sphere of radius r r that can be inscribed in the pyramid in ( 1 ) (1) with volume V p V_{p} .

Let a , b a,b and c c be coprime positive integers.

If V s V s 2 = a 3 b 6 ( c + b sec 2 ( π 4 n ) + c ) 3 \dfrac{V_s}{V_{s_2}} = \dfrac{a^3}{b^6} (\sqrt{c + b \sec^2(\dfrac{\pi}{4 n}}) + c)^{3} , find a + b + c a + b + c .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 4, 2017

For area of 4 n g o n 4n - gon :

Let B C = x BC = x be a side of the 4 n g o n 4n - gon , A C = A B = r AC = AB= r^{*} , A D = h AD = h^* , and B A D = 45 n \angle{BAD} = \dfrac{45}{n} .

x 2 = r sin ( 45 n ) r = x 2 sin ( 45 n ) h = x 2 cot ( 45 n ) \dfrac{x}{2} = r^{*} \sin(\dfrac{45}{n}) \implies r^{*} = \dfrac{x}{2 \sin(\dfrac{45}{n})} \implies h^{*} = \dfrac{x}{2} \cot(\dfrac{45}{n}) \implies

A n g o n = n cot ( 45 n ) x 2 V p = n 3 cot ( 45 n ) x 2 H A_{n - gon} = n \cot(\dfrac{45}{n}) x^2 \implies V_{p} = \dfrac{n}{3} \cot(\dfrac{45}{n}) x^2 H

The volume of the sphere V s = 4 3 π R 3 V_{s} = \dfrac{4}{3} \pi R^3

Let H H be the height of the given pyramid.

In the right triangle above: A C = H R , B C = x 2 sin ( 45 n ) , A B = R AC = H - R, BC = \dfrac{x}{2 \sin(\dfrac{45}{n})}, AB = R \implies

R 2 = ( H R ) 2 + x 2 4 csc 2 ( 45 n ) x 2 = 4 sin 2 ( 45 n ) ( 2 R H H 3 ) R^2 = (H - R)^2 + \dfrac{x^2}{4} \csc^2(\dfrac{45}{n}) \implies x^2 = 4 \sin^2(\dfrac{45}{n}) (2RH - H^3)

V p ( H ) = 4 n 3 sin 2 ( 45 n ) ( 2 R H 2 H 3 ) \implies V_{p}(H) = \dfrac{4n}{3} \sin^2(\dfrac{45}{n}) (2RH^2 - H^3) \implies

d V p d H = 4 n 3 sin 2 ( 45 n ) ( H ) ( 4 R 3 H ) = 0 \dfrac{dV_{p}}{dH} = \dfrac{4n}{3} \sin^2(\dfrac{45}{n}) (H) (4R - 3H) = 0 , H 0 H = 4 R 3 x 2 = 32 9 sin 2 ( 45 n ) R 2 x = 4 2 sin ( 45 n ) R 3 H \neq 0 \implies H = \dfrac{4R}{3} \implies x^2 = \dfrac{32}{9} \sin^2(\dfrac{45}{n}) R^2 \implies x = \dfrac{4 \sqrt{2} \sin(\dfrac{45}{n}) R} {3}

H = 4 R 3 H = \dfrac{4R}{3} maximizes V p ( H ) V_{p}(H) since d 2 V p d H 2 ( H = 4 R 3 ) < 0 \dfrac{d^2V_{p}}{dH^2}|_{(H = \dfrac{4R}{3})} < 0

To find the inscribed sphere: Cut the pyramid and inscribed sphere with a vertical plane passing through the center of the sphere , the cross-section becomes a circle inscribed in an isosceles triangle:

Using the above isosceles triangle we have:

A C = B C AC = BC is the slant height s = x 2 cot 2 ( 45 n ) + 4 h 2 2 s = \dfrac{\sqrt{x^2 \cot^2(\dfrac{45}{n}) + 4h^2}}{2} of our square pyramid and A B = 2 h = x cot ( 45 n ) AB = 2 h^{*} = x \cot(\dfrac{45}{n}) , where from above h = x 2 cot ( 45 n ) . h^{*} = \dfrac{x}{2} \cot(\dfrac{45}{n}).

As an analogy using the regular dodecagon( n = 3 n = 3 ) above, 2 h 2 h^{*} is the line segment from 10 10 to 4 4 .

From the isosceles triangle diagram above the Area of the isosceles triangle A = r ( 2 s + x cot ( 45 n ) ) 2 A = \dfrac{r(2s + x \cot(\dfrac{45}{n}))}{2}

r = 2 A 2 s + x cot ( 45 n ) r = x cot ( 45 n ) H x 2 cot 2 ( 45 n ) + 4 H 2 + x cot ( 45 n ) \implies r = \dfrac{2A}{2s + x \cot(\dfrac{45}{n})} \implies r = \dfrac{x \cot(\dfrac{45}{n}) H}{\sqrt{x^2 \cot^2(\dfrac{45}{n}) + 4 H^2} + x \cot(\dfrac{45}{n})}

Using H = 4 R 3 H = \dfrac{4R}{3} and x = 4 2 sin ( 45 n ) R 3 x = \dfrac{4 \sqrt{2} \sin(\dfrac{45}{n}) R} {3} and after simplifying we obtain:

r = ( 4 3 R 1 + 2 sec 2 ( 45 n ) + 1 ) r = (\dfrac{\dfrac{4}{3} R}{\sqrt{1 + 2 \sec^2(\dfrac{45}{n})} + 1})

Converting to radians we have: r = ( 4 3 R 1 + 2 sec 2 ( π 4 n ) + 1 ) r = (\dfrac{\dfrac{4}{3} R}{\sqrt{1 + 2 \sec^2(\dfrac{\pi}{4n}) } + 1})

V s 2 = 64 27 ( 1 1 + 2 sec 2 ( π 4 n ) + 1 ) 3 V s \implies V_{s_2} = \dfrac{64}{27} (\dfrac{1} {\sqrt{1 + 2 \sec^2(\dfrac{\pi}{4n})} + 1})^3 * V_{s} \implies

V s V s 2 = 27 64 ( 1 + 2 sec 2 ( π 4 n ) + 1 ) 3 = \dfrac{V_{s}}{V_{s_2}} = \dfrac{27}{64} (\sqrt{1 + 2 \sec^2(\dfrac{\pi}{4 n}}) + 1)^{3} =

3 3 2 6 ( 1 + 2 sec 2 ( π 4 n ) + 1 ) 3 = a 3 b 6 ( c + b sec 2 ( π 4 n ) + c ) 3 a + b + c = 6 \dfrac{3^3}{2^6} (\sqrt{1 + 2 \sec^2(\dfrac{\pi}{4 n}}) + 1)^{3} =\dfrac{a^3}{b^6} (\sqrt{c + b \sec^2(\dfrac{\pi}{4 n}}) + c)^{3} \implies a + b + c = \boxed{6}

Notice: For n = 1 n = 1 we obtain: V s V s 2 = 27 64 ( 5 + 1 ) 3 = 27 64 ( 5 + 1 2 ) 3 8 = 27 8 ( ϕ ) 3 = ( 3 ϕ 2 ) 3 \dfrac{V_{s}}{V_{s_2}} = \dfrac{27}{64} * (\sqrt{5} + 1)^3 = \dfrac{27}{64} * (\dfrac{\sqrt{5} + 1}{2})^3 * 8 = \dfrac{27}{8} (\phi)^3 = (\dfrac{3 \phi}{2})^3 , where ϕ \phi represents the golden ratio, or ( ϕ ) 3 = 8 27 V s V s 2 (\phi)^3 = \dfrac{8}{27} \dfrac{V_{s}}{V_{s_{2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...