Inscribed and Circumscribed Spheres 3

Calculus Level 3

A sphere is inscribed in a n n -gonal pyramid whose base is a regular n n -gon, where n n is a positive integer and n 4 n \geq 4 .

In right A B C \triangle{ABC} let r r be the radius of the inscribed sphere, A C AC the height of the pyramid and j j a positive real number.

The side of the base of the n n -gonal pyramid is x = r j x = rj , the slant height B C = 5 j 2 4 cot ( π n ) BC = \dfrac{5j^2}{4} \cot(\dfrac{\pi}{n}) , and C D = j CD = j .

Inscribe the given n n -gonal pyramid in a sphere and let V s 2 ( n ) V_{s2}(n) be the volume of the circumscribed sphere. Let V s 1 ( n ) V_{s1}(n) be the volume of the inscribed sphere.

Find lim n V 2 ( n ) V 1 ( n ) . \lim_{n \rightarrow \infty} \dfrac{V_{2}(n)}{V_{1}(n)}.

Note: A B x AB \neq x .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jan 28, 2018

For area of n g o n n - gon :

Let P Q = x PQ = x be a side of the n g o n n - gon , P B = Q B = m PB = QB= m , A B = h AB = h^* , and Q B A = π n \angle{QBA} = \dfrac{\pi}{n} .

x 2 = m sin ( π n ) m = x 2 sin ( π n ) h = x 2 cot ( π n ) = r j 2 cot ( π n ) \dfrac{x}{2} = m \sin(\dfrac{\pi}{n}) \implies m = \dfrac{x}{2 \sin(\dfrac{\pi}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{\pi}{n}) = \dfrac{rj}{2} \cot(\dfrac{\pi}{n})

In right A B C \triangle{ABC} O E B C , O E = O D = O A = r , O C = r + j , A B = h = r j 2 cot ( π n ) E B = r j 2 cot ( π n ) OE \perp BC, OE = OD = OA = r, OC = r + j, AB = h^{*} = \dfrac{rj}{2} \cot(\dfrac{\pi}{n}) \implies EB = \dfrac{rj}{2} \cot(\dfrac{\pi}{n}) and let C E = y CE = y .

A B C C O E j cot ( π n ) 2 = r j cot ( π n ) + 2 y 2 ( r + j ) r j cot ( π n ) + j 2 cot ( π n ) = r j cot ( π n ) + 2 y \triangle{ABC} \sim \triangle{COE} \implies \dfrac{j \cot(\dfrac{\pi}{n})}{2} = \dfrac{rj \cot(\dfrac{\pi}{n}) + 2y}{2(r + j)} \implies rj\cot(\dfrac{\pi}{n}) + j^2\cot(\dfrac{\pi}{n}) = rj\cot(\dfrac{\pi}{n}) + 2y \implies y = j 2 cot ( π n ) 2 y = \dfrac{j^2\cot(\dfrac{\pi}{n})}{2} .

In right C O E \triangle{COE} the pythagorean theorem j 4 cot 2 ( π n ) 4 + r 2 = r 2 + 2 r j + j 2 j 4 cot 2 ( π n ) = 8 r j + 4 j 2 r = ( j 2 cot 2 ( π n ) 4 8 ) j \implies \dfrac{j^4\cot^2(\dfrac{\pi}{n})}{4} + r^2 = r^2 + 2rj + j^2 \implies j^4\cot^2(\dfrac{\pi}{n}) = 8rj + 4j^2 \implies r = (\dfrac{j^2\cot^2(\dfrac{\pi}{n}) - 4}{8}) j \implies

h = A C = 2 r + j = j 3 cot 2 ( π n ) 4 h = AC = 2r + j = \dfrac{j^3\cot^2(\dfrac{\pi}{n})}{4} and h = A B = ( j 2 c o t ( π n ) 4 ) cot ( π n ) 16 h^{*} = AB = \dfrac{(j^2cot(\dfrac{\pi}{n}) - 4)\cot(\dfrac{\pi}{n})}{16}

In A B C \triangle{ABC} the pythagorean theorem s = B C = j 2 cot ( π n ) ( j 2 cot 2 ( π n ) + 4 ) 16 = 5 4 j 2 cot ( π n ) = 20 j 2 cot ( π n ) 16 \implies s = BC = \dfrac{j^2\cot(\dfrac{\pi}{n})(j^2\cot^2(\dfrac{\pi}{n}) + 4)}{16} = \dfrac{5}{4}j^2\cot(\dfrac{\pi}{n}) = \dfrac{20j^2\cot(\dfrac{\pi}{n})}{16} \implies

j 2 cot ( π n ) 16 ( j 2 cot ( π n ) 16 ) = 0 j = 4 tan ( π n ) \dfrac{j^2\cot(\dfrac{\pi}{n})}{16} (j^2\cot(\dfrac{\pi}{n}) - 16) = 0 \implies j = 4\tan(\dfrac{\pi}{n}) for j > 0 r = 2 tan ( π n ) ( 4 tan 2 ( π n ) ) j > 0 \implies r = 2\tan(\dfrac{\pi}{n}) (4 - \tan^2(\dfrac{\pi}{n})) .

For the circumscribed sphere:

Let O O be center of the circumscribed sphere and R R be the radius.

In right A O H , A H = m , O A = h R , \triangle{AOH}, AH = m, OA = h - R, and O H = R OH = R \implies

( h R ) 2 + m 2 = R 2 h 2 2 h R + m 2 = 0 R = m 2 + h 2 2 h (h - R)^2 + m^2 = R^2 \implies h^2 - 2hR + m^2 = 0 \implies R = \dfrac{m^2 + h^2}{2h}

From above m = r j 2 sin ( π n ) = 4 sec ( π n ) tan ( π n ) ( 4 tan 2 ( π n ) ) m = \dfrac{rj}{2 \sin(\dfrac{\pi}{n})} = 4\sec(\dfrac{\pi}{n})\tan(\dfrac{\pi}{n}) (4 - \tan^2(\dfrac{\pi}{n})) and h = 16 tan ( π n ) h = 16\tan(\dfrac{\pi}{n}) \implies R = ( tan ( π n ) ) [ ( 4 tan 2 ( π n ) ) 2 sec 2 ( π n ) + 16 ] 2 R = \dfrac{(\tan(\dfrac{\pi}{n}))[(4 - \tan^2(\dfrac{\pi}{n}))^2 \sec^2(\dfrac{\pi}{n}) + 16]}{2}

R ( n ) r ( n ) = ( 4 tan 2 ( π n ) ) 2 sec 2 ( π n ) + 16 4 ( 4 tan 2 ( π n ) ) \dfrac{R(n)}{r(n)} = \dfrac{(4 - \tan^2(\dfrac{\pi}{n}))^2 \sec^2(\dfrac{\pi}{n}) + 16}{4(4 - \tan^2(\dfrac{\pi}{n}))} and lim n R ( n ) r ( n ) = 2 \lim_{n \rightarrow \infty} \dfrac{R(n)}{r(n)} = 2 \implies lim n V 2 ( n ) V 1 ( n ) = 2 3 = 8 \lim_{n \rightarrow \infty} \dfrac{V_{2}(n)}{V_{1}(n)} = 2^3 = \boxed{8} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...