For each positive integer n :
Let V s ( n ) , V p ( n ) , V c ( n ) and V m ( n ) be the volumes of the sphere, right circular cone, right circular cylinder and square pyramid respectively so that:
V p ( n ) is the volume of the largest right circular cone inscribed in the sphere of volume V s ( n )
V c ( n ) is the volume of the largest right circular cylinder inscribed in the right circular cone of volume V p ( n )
V m ( n ) is the volume of the largest square pyramid inscribed in the right circular cylinder of volume V c ( n ) .
and
V s ( n + 1 ) is the volume of the largest sphere inscribed in the square pyramid of volume V m ( n ) .
If V s 3 V p ∗ V c ∗ V m = π 1 ( b a ) a ∗ c ( b a ∗ b ∗ α b − a b b a ∗ b ∗ α b ) b , where α = 2 1 + 2 and a , b and c are distinct primes, find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Let V s ( 1 ) = 3 4 π R 3 , V p ( 1 ) = 3 1 π r 2 H , V c ( 1 ) = π x 2 h and V m ( 1 ) = 3 1 y 2 h .
For the diagrams use R = R 1 , r = r 1 , H = H 1 x = x 1 h = h 1 and y = y 1
R 1 2 = ( H 1 − r 1 ) 2 + r 2 = H 1 2 − 2 H 1 R 1 + R 1 2 + r 1 2 ⟹ r 1 2 = 2 H 1 R 1 − H 1 2 ⟹ V p ( 1 ) = 3 1 π ( 2 H 1 2 R 1 − H 1 3 ) ⟹
d H 1 d V p ( 1 ) = 3 π R 1 H 1 ( 4 R 1 − 3 H 1 ) = 0 H 1 = 0 ⟹ H 1 = 3 4 R 1 ⟹ r 1 = 3 2 2 R 1 ⟹ V p ( 1 ) = ( 3 2 ) 3 V s ( 1 )
The two triangles in the above diagram are similar ⟹ r 1 r 1 − x 1 = H 1 h 1 ⟹ h 1 = r 1 ( r 1 − x 1 ) H 1 ⟹ V c ( 1 ) = r 1 π H 1 ( r 1 x 1 2 − x 1 3 ) ⟹ d x 1 d V c ( 1 ) = r 1 π H 1 x 1 ( 2 r 1 − 3 x 1 ) = 0 x 1 = 0 ⟹ x 1 = 3 2 r 1 ⟹ h 1 = 3 H 1
r 1 = 3 2 2 R 1 and H 1 = 3 4 R 1 ⟹ x 1 = 9 4 2 R 1 and h 1 = 9 4 R 1 ⟹ V c ( 1 ) = ( 3 2 ) 5 V s ( 1 )
y 1 = 2 x 1 and x 1 = 9 4 2 R 1 ⟹ y 1 = 9 8 R 1 ⟹ V m ( 1 ) = π 1 ( 3 2 ) 6 V s ( 1 )
From above y 1 = 9 8 R 1 and h 1 = 9 4 R 1
⟹ the slant height s = 2 y 1 2 + 4 h 1 2 = 9 4 2 R 1
and the area of the above triangle is A = 2 1 y 1 h 1 = ( 2 y 1 + 2 s ) R 2 ⟹ R 2 = y 1 + 2 s y 1 h 1 = 9 ( 1 + 2 ) 4 R 1
Let α = 2 1 + 2 ⟹ R 2 = 9 α 2 R 1 .
In General:
For n ≥ 2 :
R n = ( 9 α 2 ) R n − 1 = ( 9 α 2 ) n − 1 R 1
⟹
( r n , H n ) = ( 3 2 2 ( 9 α 2 ) n − 1 R 1 , 3 4 ( 9 α 2 ) n − 1 R 1 )
( x n , h n ) = ( 9 4 2 ( 9 α 2 ) n − 1 R 1 , 9 4 ( 9 α 2 ) n − 1 R 1 )
( y n , h n ) = ( 9 8 ( 9 α 2 ) n − 1 R 1 , 9 4 ( 9 α 2 ) n − 1 R 1 )
⟹
V s ( n ) = ( 7 2 9 α 3 8 ) n − 1 V s ( 1 )
V p ( n ) = ( 3 2 ) 3 ( 7 2 9 α 3 8 ) n − 1 V s ( 1 )
V c ( n ) = ( 3 2 ) 5 ( 7 2 9 α 3 8 ) n − 1 V s ( 1 )
V m ( n ) = π 1 ( 3 2 ) 6 ( 7 2 9 α 3 8 ) n − 1 V s ( 1 )
⟹
V s = ( 7 2 9 α 3 − 8 7 2 9 α 3 ) V s ( 1 )
V p = ( 3 2 ) 3 ( 7 2 9 α 3 − 8 7 2 9 α 3 ) V s ( 1 )
V c = ( 3 2 ) 5 ( 7 2 9 α 3 − 8 7 2 9 α 3 ) V s ( 1 )
V m = π 1 ( 3 2 ) 6 ( 7 2 9 α 3 − 8 7 2 9 α 3 ) V s ( 1 )
⟹ V s 3 V p ∗ V c ∗ V m = π 1 ( 3 2 ) 1 4 ( 7 2 9 α 3 − 8 7 2 9 α 3 ) 3 = π 1 ( 3 2 ) 2 ∗ 7 ( 3 2 ∗ 3 α 3 − 2 3 3 2 ∗ 3 α 3 ) 3 = π 1 ( b a ) a ∗ c ( b a ∗ b ∗ α b − a b b a ∗ b ∗ α b ) b ⟹ a + b + c = 1 2