Inscribed Circle!

Geometry Level 3

In A B C \triangle{ABC} , the inscribed circle with radius r r is tangent to A B , B C \overline{AB}, \overline{BC} and A C \overline{AC} at points D , E D, E and F F respectively.

If the value of r r , for which the area of A B C \triangle ABC , A = 2 r ( 2 r + 21 ) A_\triangle = 2r(2r + 21) , can be expressed as r = α + β λ r = \dfrac{\alpha + \sqrt{\beta}}{\lambda} , where α , β \alpha, \beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .


The answer is 904.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Rocco Dalto
Dec 26, 2020

A A B C = 1 2 ( x + r + 10 ) r + 1 2 ( x + r + 11 ) + 1 2 ( 2 r + 21 ) = ( x + 2 r + 21 ) r A_{\triangle{ABC}} = \dfrac{1}{2}(x + r + 10)r + \dfrac{1}{2}(x + r + 11) + \dfrac{1}{2}(2r + 21) = (x + 2r + 21)r

and using Heron's formula with s = x + 2 r + 21 s = x + 2r + 21 \implies

A A B C = ( x + 2 r + 21 ) ( x ) ( r + 10 ) ( r + 11 ) A_{\triangle{ABC}} = \sqrt{(x + 2r + 21)(x)(r + 10)(r + 11)} \implies

( x + 2 r + 21 ) 2 r 2 = ( x + 2 r + 21 ) ( x ) ( r + 10 ) ( r + 11 ) (x + 2r + 21)^2r^2 = (x + 2r + 21)(x)(r + 10)(r + 11) \implies

( x + 2 r + 21 ) r 2 = ( r + 10 ) ( r + 11 ) x r 2 x + ( 2 r + 21 ) r 2 = ( r + 10 ) ( r + 11 ) x (x + 2r + 21)r^2 = (r + 10)(r + 11)x \implies r^2x + (2r + 21)r^2 = (r + 10)(r + 11)x

( 21 r + 110 ) x = ( 2 r + 21 ) r 2 x = ( 2 r + 21 ) r 2 21 r + 110 \implies (21r + 110)x = (2r + 21)r^2 \implies x = \dfrac{(2r + 21)r^2}{21r + 110} \implies

A A B C = ( 2 r + 21 ) ( r 2 21 r + 110 + 1 ) r = ( 2 r + 21 ) ( r 2 + 21 r + 110 ) r 21 r + 110 = A_{\triangle{ABC}} = (2r + 21)(\dfrac{r^2}{21r + 110} + 1)r =\dfrac{(2r + 21)(r^2 + 21r + 110)r}{21r + 110} =

2 ( 2 r + 21 ) r r 2 + 21 r + 110 = 42 r + 220 r 2 21 r 110 = 0 2(2r + 21)r \implies r^2 + 21r + 110 = 42r + 220 \implies r^2 - 21r - 110 = 0

dropping the negative root r = 21 + 881 2 = α + β λ \implies r = \dfrac{21 + \sqrt{881}}{2} = \dfrac{\alpha + \sqrt{\beta}}{\lambda}

α + β + λ = 904 \implies \alpha + \beta + \lambda = \boxed{904} .

It's fascinating that x = 2r + 21

Saya Suka - 5 months, 2 weeks ago

Log in to reply

In General for B E = x + a \overline{BE} = x + a and E C = x + b x = ( 2 r + a + b ) r 2 ( a + b ) r + a b \overline{EC} = x + b \implies x = \dfrac{(2r + a + b)r^2}{(a + b)r + ab}

Rocco Dalto - 5 months, 2 weeks ago
Kris Hauchecorne
Dec 29, 2020

I set a coordinate system with origin E an B (p, 0) and C (q, 0) on the x-axis. Calculated the tangents through B and C, and then the coordinates of A ((p+q)/(pq+R^2) * R^2; 2pqR/(pq+R^2)). Then I set the y-co-ordinate to 4R, p to -(R+10) and q to R+11.

Chew-Seong Cheong
Dec 28, 2020

Let A D = A F = x AD=AF = x . Then the semiperimeter of A B C \triangle ABC , s = x + 2 r + 21 s = x + 2r + 21 . Since the r r is the inradius of A B C \triangle ABC , then A = s r = ( x + 2 r + 21 ) r = 2 r ( 2 r + 21 ) x = 2 r + 21 A_\triangle = sr = (x+2r+21)r = 2r(2r+21) \implies x = 2r + 21 , A B = c = x + r + 11 = 3 r + 32 AB = c = x + r + 11 = 3r+32 , and C A = b = x + r + 10 = 3 r + 31 CA = b = x + r + 10 = 3r + 31 .

Note that A = b c sin A 2 A_\triangle = \dfrac {bc \sin A}2 . Therefore,

b c sin A 2 = 2 r ( 2 r + 21 ) ( 3 r + 31 ) ( 3 r + 32 ) 2 tan A 2 1 + tan 2 A 2 = 4 r ( 2 r + 21 ) ( 3 r + 31 ) ( 3 r + 32 ) 2 ( r x ) 1 + ( r x ) 2 = 4 r ( 2 r + 21 ) ( 9 r 2 + 189 r + 992 ) r x x 2 + r 2 = 2 r ( 2 r + 21 ) ( 9 r 2 + 189 r + 992 ) r ( 2 r + 21 ) ( 2 r + 21 ) 2 + r 2 = 2 r ( 2 r + 21 ) 9 r 2 + 189 r + 992 5 r 2 + 84 r + 441 = 2 9 r 2 + 189 r + 992 = 10 r 2 + 168 r + 882 r 2 21 r 110 = 0 r = 21 + 881 2 \begin{aligned} \frac {bc \sin A}2 & = 2r(2r+21) \\ (3r+31)(3r+32) \cdot \frac {2 \tan \frac A2}{1+\tan^2 \frac A2} & = 4r(2r+21) \\ (3r+31)(3r+32) \cdot \frac {2\left(\frac rx\right)}{1+\left(\frac rx\right)^2} & = 4r(2r+21) \\ (9r^2 + 189r + 992) \cdot \frac {rx}{x^2 + r^2} & = 2r(2r+21) \\ (9r^2 + 189r + 992) \cdot \frac {r(2r+21)}{(2r+21)^2 + r^2} & = 2r(2r+21) \\ \frac {9r^2 + 189r + 992}{5r^2 + 84r + 441} & = 2 \\ 9r^2 + 189r + 992 & = 10r^2 + 168r + 882 \\ r^2 - 21r - 110 & = 0 \\ \implies r & = \frac {21 + \sqrt{881}}2 \end{aligned}

Therefore α + β + γ = 21 + 881 + 2 = 904 \alpha + \beta + \gamma = 21 + 881 + 2 = \boxed{904} .

David Vreken
Dec 27, 2020

Let the center of the inscribed circle be I I and let θ = I C F = I C E \theta = \angle ICF = \angle ICE . Then from I C E \triangle ICE , I C = ( r + 10 ) 2 + r 2 = 2 r 2 + 20 r + 100 IC = \sqrt{(r + 10)^2 + r^2} = \sqrt{2r^2 + 20r + 100} , cos θ = r + 10 2 r 2 + 20 r + 100 \cos \theta = \cfrac{r + 10}{\sqrt{2r^2 + 20r + 100}} , sin θ = r 2 r 2 + 20 r + 100 \sin \theta = \cfrac{r}{\sqrt{2r^2 + 20r + 100}} , and cos 2 θ = cos 2 θ sin 2 θ = ( r + 10 ) 2 r 2 2 r 2 + 20 r + 100 = 10 ( r + 5 ) r 2 + 10 r + 50 \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \cfrac{(r + 10)^2 - r^2}{2r^2 + 20r + 100} = \cfrac{10(r + 5)}{r^2 + 10r + 50} .

As tangents from the same point, C F = C E = r + 10 CF = CE = r + 10 , B D = B E = r + 11 BD = BE = r + 11 , and x = A F = A D x = AF = AD . Therefore, the perimeter of A B C \triangle ABC is P = 2 ( r + 10 ) + 2 ( r + 11 ) + 2 x P = 2(r + 10) + 2(r + 11) + 2x , and the semiperimeter is s = 2 r + 21 + x s = 2r + 21 + x .

Since A A B C = 2 r ( 2 r + 21 ) A_{\triangle ABC} = 2r(2r + 21) and A A B C = r s = r ( 2 r + 21 + x ) A_{\triangle ABC} = rs = r(2r + 21 + x) , these equations combine and solve to x = 2 r + 21 x = 2r + 21 .

The sides of A B C \triangle ABC are then A B = 2 r + 21 + r + 11 = 3 r + 32 AB = 2r + 21 + r + 11 = 3r + 32 , A C = 2 r + 21 + r + 10 = 3 r + 31 AC = 2r + 21 + r + 10 = 3r + 31 , and B C = r + 11 + r + 10 = 2 r + 21 BC = r + 11 + r + 10 = 2r + 21 .

Then by the law of cosines on A B C \triangle ABC , cos 2 θ = ( 3 r + 31 ) 2 + ( 2 r + 21 ) 2 ( 3 r + 32 ) 2 2 ( 3 r + 31 ) ( 2 r + 21 ) = r + 9 3 r + 31 \cos 2\theta = \cfrac{(3r + 31)^2 + (2r + 21)^2 - (3r + 32)^2}{2(3r + 31)(2r + 21)} = \cfrac{r + 9}{3r + 31} .

That means cos 2 θ = 10 ( r + 5 ) r 2 + 10 r + 50 = r + 9 3 r + 31 \cos 2\theta = \cfrac{10(r + 5)}{r^2 + 10r + 50} = \cfrac{r + 9}{3r + 31} , which rearranges to ( r + 10 ) ( r 2 21 r 110 ) = 0 (r + 10)(r^2 - 21r - 110) = 0 , and solves to r = 21 + 881 2 r = \cfrac{21 + \sqrt{881}}{2} for r > 0 r > 0 .

Therefore, α = 21 \alpha = 21 , β = 881 \beta = 881 , λ = 2 \lambda = 2 , and α + β + λ = 904 \alpha + \beta + \lambda = \boxed{904} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...