Inscribed Circle !

Level pending

If the area of the circle centered at the origin ( 0 , 0 ) (0,0) and inscribed in the two curves

f ( x ) = 1 x 2 + 1 f(x) = \dfrac{1}{x^2 + 1} and g ( x ) = 1 x 2 + 1 g(x) = -\dfrac{1}{x^2 + 1} can be expressed as A = a b b a b b a π A = \dfrac{a - b^{\frac{b}{a}}}{b^{\frac{b}{a}}}\pi , where a a and b b

are coprime positive integers, find a + b a + b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 14, 2020

Let P : ( x , 1 1 + x 2 ) P: (x,\dfrac{1}{1 + x^2}) and O : ( 0 , 0 ) O: (0,0)

To minimize O P : \overline{OP} :

D = ( O P ) 2 = x 2 + ( 1 + x 2 ) 2 D = (\overline{OP})^2 = x^2 + (1 + x^2)^{-2} \implies d D d x = 2 x ( ( 1 + x 2 ) 3 2 ( 1 + x 2 ) 3 ) = 0 \dfrac{dD}{dx} = 2x(\dfrac{(1 + x^2)^3 - 2}{(1 + x^2)^3}) = 0

x 0 x = ± 2 1 3 1 x \neq 0 \implies x = \pm\sqrt{2^{\frac{1}{3}} - 1} \implies y = 1 2 1 3 y = \dfrac{1}{2^{\frac{1}{3}}} \implies O P = 3 2 2 3 2 1 3 OP = \dfrac{\sqrt{3 - 2^{\frac{2}{3}}}}{2^{\frac{1}{3}}}

\implies The area of the inscribed circle A = π ( O P ) 2 = A = \pi (OP)^2 = 3 2 2 3 2 2 3 π \dfrac{3 - 2^{\frac{2}{3}}}{2^{\frac{2}{3}}}\pi

= a b b a b b a π a + b = 5 = \dfrac{a - b^{\frac{b}{a}}}{b^{\frac{b}{a}}}\pi \implies a + b = \boxed{5} .

Note:

0 < x < 2 1 3 1 d D d x < 0 0 < x < \sqrt{2^{\frac{1}{3}} - 1} \implies \dfrac{dD}{dx} < 0 and x > 2 1 3 1 d D d x > 0 x > \sqrt{2^{\frac{1}{3}} - 1} \implies \dfrac{dD}{dx} > 0

\implies relative min at x = 2 1 3 1 x = \sqrt{2^{\frac{1}{3}} - 1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...