Inscribed Circles!

Geometry Level pending

The pink parabola y = x 2 y = x^2 is tangent to a circle with radius 1 1 at points P P and P P' as shown above and the green parabola intersects the circle at points A , A, P P and P P' .

Find the area of the red shaded region above.

For a somewhat more challenging problem:


The answer is 1.04719755.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 29, 2020

D = d 2 = x 2 + ( x 2 y 0 ) 2 d D d x = x ( 2 x 2 ( 2 y 0 1 ) ) = 0 D = d^2 = x^2 + (x^2 - y_{0})^2 \implies \dfrac{dD}{dx} = x(2x^2 - (2y_{0} - 1)) = 0 \implies

x = ± 2 y 0 1 2 2 y 0 1 2 + ( 2 y 0 1 2 y 0 ) 2 = 1 x = \pm\sqrt{\dfrac{2y_{0} - 1}{2}} \implies \dfrac{2y_{0} - 1}{2} + (\dfrac{2y_{0} - 1}{2} - y_{0})^2 = 1

2 y 0 1 2 = 3 4 y 0 = 5 4 A : ( 0 , 9 4 ) \implies \dfrac{2y_{0} - 1}{2} = \dfrac{3}{4} \implies y_{0} = \dfrac{5}{4} \implies A:(0,\dfrac{9}{4}) and x = ± 3 2 x = \pm\dfrac{\sqrt{3}}{2}

P : ( 3 2 , 0 ) \implies P:(\dfrac{\sqrt{3}}{2},0) and P : ( 3 2 , 0 ) P':(-\dfrac{\sqrt{3}}{2},0) .

Let y = a x 2 + b x + c c = 9 4 y = ax^2 + bx + c \implies c = \dfrac{9}{4}

and

3 2 = 3 4 a + 3 2 b -\dfrac{3}{2} = \dfrac{3}{4}a + \dfrac{\sqrt{3}}{2}b

3 2 = 3 4 a 3 2 b -\dfrac{3}{2} = \dfrac{3}{4}a - \dfrac{\sqrt{3}}{2}b

a = 2 \implies a = -2 and b = 0 y = 2 x 2 + 9 4 b = 0 \implies y = -2x^2 + \dfrac{9}{4}

I = 2 0 3 2 ( 2 x 2 + 9 4 ) ( 5 4 1 x 2 ) d x = I = 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} (-2x^2 + \dfrac{9}{4}) - (\dfrac{5}{4} - \sqrt{1 - x^2}) \:\ dx =

2 0 3 2 ( 2 x 2 + 1 + 1 x 2 ) d x 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} (-2x^2 + 1 + \sqrt{1 - x^2}) \:\ dx .

Letting x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) \implies

I = 2 ( ( 2 x 3 3 + x ) 0 3 2 + ( 1 2 ( θ + 1 2 sin ( 2 θ ) ) ) 0 π 3 ) = I = 2((-\dfrac{2x^3}{3} + x)|_{0}^{\dfrac{\sqrt{3}}{2}} + (\dfrac{1}{2}(\theta + \dfrac{1}{2}\sin(2\theta)))|_{0}^{\dfrac{\pi}{3}}) =

2 ( 3 3 8 + π 6 ) = 3 3 4 + π 3 2(\dfrac{3\sqrt{3}}{8} + \dfrac{\pi}{6}) = \dfrac{3\sqrt{3}}{4} + \dfrac{\pi}{3}

A 1 = π I = 2 π 3 3 3 4 \implies \boxed{A_{1} = \pi - I = \dfrac{2\pi}{3} - \dfrac{3\sqrt{3}}{4}}

For A 2 = 2 0 3 2 ( ( 5 4 1 x 2 ) x 2 ) d x = A_{2} = 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} ((\dfrac{5}{4} - \sqrt{1 - x^2}) - x^2) \:\ dx =

2 0 3 2 ( 5 4 x 2 1 x 2 ) d x 2\displaystyle\int_{0}^{\dfrac{\sqrt{3}}{2}} (\dfrac{5}{4} - x^2 - \sqrt{1 - x^2}) \:\ dx

Letting x = sin ( θ ) d x = cos ( θ ) x = \sin(\theta) \implies dx = \cos(\theta) \implies

A 2 = 2 ( 5 4 x x 3 3 0 3 2 1 2 ( θ + 1 2 sin ( 2 θ ) ) 0 π 3 ) = A_{2} = 2(\dfrac{5}{4}x - \dfrac{x^3}{3}|_{0}^{\dfrac{\sqrt{3}}{2}} - \dfrac{1}{2}(\theta + \dfrac{1}{2}\sin(2\theta))|_{0}^{\dfrac{\pi}{3}}) =

2 ( 4 3 8 3 8 π 6 ) = 3 3 4 π 3 2(4\dfrac{\sqrt{3}}{8} - \dfrac{\sqrt{3}}{8} - \dfrac{\pi}{6}) = \dfrac{3\sqrt{3}}{4} - \dfrac{\pi}{3}

A 2 = 3 3 4 π 3 \boxed{A_{2} = \dfrac{3\sqrt{3}}{4} - \dfrac{\pi}{3}}

\implies the desired area A = A 1 + A 2 = π 3 1.04719755 A = A_{1} + A_{2} = \dfrac{\pi}{3} \approx \boxed{1.04719755}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...