Inscribed ellipse in a pentagon

Geometry Level 5

An irregular pentagon A B C D E ABCDE is specified by its vertices: A ( 1 , 0 ) , B ( 3 , 0 ) , C ( 5 , 3 ) , D ( 1 , 5 ) , E ( 2 , 1 ) A(-1,0), B(3, 0), C(5,3), D(1,5),E(-2, 1) . A unique ellipse can be inscribed within this pentagon. If S S is the sum of its semi-major and semi-minor axes lengths, then submit 100 S \lfloor 100 S \rfloor .


The answer is 486.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yuriy Kazakov
Apr 19, 2021

The idea of ​​the solution is described here .

Python was used to find a solution.

The semi-major and semi-minor axes of the ellipse are equal

M = 4149580736921600 125240115200 422147689 25024000 M=\frac{\sqrt{{4149580736921600}- {125240115200 \sqrt{422147689}}}}{25024000}

m = 125240115200 422147689 + 4149580736921600 25024000 m=\frac{\sqrt{{125240115200 \sqrt{422147689}}+ {4149580736921600}}}{25024000}

t r u n c ( 100 ( M + m ) ) = 486 trunc(100(M+m)) =486

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#
#Solution for problem
#https://brilliant.org/problems/inscribed-ellipse-in-a-pentagon/
#
from math import isclose
from sympy import *

a,b,c,d,h=symbols('a,b,c,d,h')
A=Point(-1,0)
B=Point(3,0)
C=Point(5,3)
D=Point(1,5)
E=Point(-2,1)
print(A,B,C,D,E)
def PE(A,B,C,D,E):
   AD = Line(A, D) 
   EB = Line(E, B)
   H = EB.intersection(AD)[0]
   CH = Line(C, H)
   EA = Line(E, A)
   J = CH.intersection(EA)[0]
   return(J)

def eq_ellipse(x,y):
  return(x*x*a+x*y*b+y*y*c+d*x+h*y)

Q1=PE(A,B,C,D,E)
Q2=PE(B,C,D,E,A)
Q3=PE(C,D,E,A,B)
Q4=PE(D,E,A,B,C)
Q5=PE(E,A,B,C,D)
print(Q1,Q2,Q3,Q4,Q5)
(x1,y1)=Q1
(x2,y2)=Q2
(x3,y3)=Q3
(x4,y4)=Q4
(x5,y5)=Q5
print(x1*1.,y1*1.)
print(x2*1.,y2*1.)
print(x3*1.,y3*1.)
print(x4*1.,y4*1.)
print(x5*1.,y5*1.)

#equation= x1*x1*a+x1*y1*b+c*y1*y1+d*x1+h*y1=1
eq1= eq_ellipse(x1,y1)
eq2= eq_ellipse(x2,y2)
eq3= eq_ellipse(x3,y3)
eq4= eq_ellipse(x4,y4)
eq5= eq_ellipse(x5,y5)

answ=solve([eq1-1,eq2-1,eq3-1,eq4-1,eq5-1],(a,b,c,d,h))
print(answ)
print('a=', a.subs(answ).n())
print('b=', b.subs(answ).n())
print('c=', c.subs(answ).n())
print('d=', d.subs(answ).n())
print('h=', h.subs(answ).n())

major=-sqrt(2*(a*h*h+c*d*d-b*d*h-(b*b-4*a*c))*(a+c+sqrt((a-c)**2+b*b)))/(b*b-4*a*c)
minor=-sqrt(2*(a*h*h+c*d*d-b*d*h-(b*b-4*a*c))*(a+c-sqrt((a-c)**2+b*b)))/(b*b-4*a*c)

major=major.subs(answ)
minor=minor.subs(answ)
print('major=', major)
print('minor=', minor)

print(major.n())
print(minor.n())

print(latex(major))
print(latex(minor))

print((major.n()+minor.n())*100.)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
Point2D(-1, 0) Point2D(3, 0) Point2D(5, 3) Point2D(1, 5) Point2D(-2, 1)
Point2D(-311/215, 96/215) Point2D(1/31, 0) Point2D(151/35, 69/35) Point2D(293/73, 255/73) Point2D(-761/559, 1035/559)
-1.44651162790698 0.446511627906977
0.0322580645161290 0
4.31428571428571 1.97142857142857
4.01369863013699 3.49315068493151
-1.36135957066190 1.85152057245081
{a: -961, b: 4364/3, c: -24484/9, d: 62, h: 24076/3}
a= -961.000000000000
b= 1454.66666666667
c= -2720.44444444444
d= 62.0000000000000
h= 8025.33333333333
major= 3*sqrt(4149580736921600/9 - 125240115200*sqrt(422147689)/9)/25024000
minor= 3*sqrt(125240115200*sqrt(422147689)/9 + 4149580736921600/9)/25024000
1.58661696929453
3.27656017688469
\frac{3 \sqrt{\frac{4149580736921600}{9} - \frac{125240115200 \sqrt{422147689}}{9}}}{25024000}
\frac{3 \sqrt{\frac{125240115200 \sqrt{422147689}}{9} + \frac{4149580736921600}{9}}}{25024000}
486.317714617922

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...