Inscribed Octagonal Pyramid.

Geometry Level 4

Let V p V_{p} be the volume of the largest octagonal pyramid that is inscribed in a sphere of radius R R .

Find the angle (in degrees) made between two adjacent faces of the above octagonal pyramid.


The answer is 142.6285.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 23, 2020

O P = 2 1 2 r i + r 2 j + 0 k \vec{OP} = -\dfrac{\sqrt{2} - 1}{\sqrt{2}}r\vec{i} + \dfrac{r}{\sqrt{2}}\vec{j} + 0\vec{k}

O S = r i + 0 j + H k \vec{OS} = -r\vec{i} + 0\vec{j} + H\vec{k}

O R = 2 1 2 r i r 2 j + 0 k \vec{OR} = -\dfrac{\sqrt{2} - 1}{\sqrt{2}}r\vec{i} - \dfrac{r}{\sqrt{2}}\vec{j} + 0\vec{k}

\implies

U = O P X O S = r H 2 i + 2 1 2 r H j + r 2 2 k \vec{U} = \vec{OP} \:\ X \:\ \vec{OS} = \dfrac{rH}{\sqrt{2}}\vec{i} + \dfrac{\sqrt{2} - 1}{\sqrt{2}}rH\vec{j} + \dfrac{r^2}{\sqrt{2}}\vec{k}

and

V = O R X O S = r H 2 i + 2 1 2 r H j r 2 2 k \vec{V} = \vec{OR} \:\ X \:\ \vec{OS} = -\dfrac{rH}{\sqrt{2}}\vec{i} + \dfrac{\sqrt{2} - 1}{\sqrt{2}}rH\vec{j} - \dfrac{r^2}{\sqrt{2}}\vec{k}

U V = U V cos ( θ ) cos ( θ ) = U V U V \vec{U} \circ \vec{V} = |\vec{U}| |\vec{V}| \cos(\theta) \implies \cos(\theta) = \dfrac{\vec{U} \circ \vec{V}}{|\vec{U}| |\vec{V}|}

U V = r 2 2 ( 2 ( 2 1 ) H 2 + r 2 ) \implies \vec{U} \circ \vec{V} = -\dfrac{r^2}{2}(2(\sqrt{2} - 1)H^2 + r^2)

U = r 2 2 ( 2 2 ) H 2 + r 2 = V |\vec{U}| = \dfrac{r}{\sqrt{2}}\sqrt{2(2 - \sqrt{2})H^2 + r^2} = |\vec{V}|

cos ( θ ) = 2 ( 2 1 ) H 2 + r 2 2 ( 2 2 ) H 2 + r 2 \implies \cos(\theta) = -\dfrac{2(\sqrt{2} - 1)H^2 + r^2}{2(2 - \sqrt{2})H^2 + r^2}

For octagonal base x = 2 r sin ( π 8 ) x = 2r\sin(\dfrac{\pi}{8}) and the height h = r cos ( π 8 ) h = r\cos(\dfrac{\pi}{8}) \implies

The area of the octagonal base A p = 2 2 r 2 A_{p} = 2\sqrt{2}r^2 \implies the volume of the octagonal pyramid

V p = 2 2 3 r 2 H V_{p} = \dfrac{2\sqrt{2}}{3}r^2 H

R 2 = H 2 2 H R + R 2 + r 2 H 2 2 H R + r 2 = 0 R^2 = H^2 - 2HR + R^2 + r^2 \implies H^2 - 2HR + r^2 = 0 \implies

r 2 = 2 H R H 2 V p = 2 2 3 ( 2 H 2 R H 3 ) r^2 = 2HR - H^2 \implies V_{p} = \dfrac{2\sqrt{2}}{3}(2H^2R - H^3) \implies

d V p d H = 2 2 3 H ( 4 R 3 H ) = 0 H 0 H = 4 3 R r 2 = 8 9 R 2 \dfrac{dV_{p}}{dH} = \dfrac{2\sqrt{2}}{3}H(4R - 3H) = 0 \:\ H \neq 0 \implies H = \dfrac{4}{3}R \implies r^2 = \dfrac{8}{9}R^2

cos ( θ ) = 4 2 3 9 4 2 θ 142.628 5 \implies \cos(\theta) = -\dfrac{4\sqrt{2} - 3}{9 - 4\sqrt{2}} \implies \theta \approx \boxed{142.6285^{\circ}}

Note: d 2 V p d H 2 H = 4 3 R = 8 2 3 R < 0 \dfrac{d^2V_{p}}{dH^2}|_{H = \dfrac{4}{3}R} = -\dfrac{8\sqrt{2}}{3}R < 0 \implies a max occurs at H = 4 3 R H = \dfrac{4}{3}R .

Hi Rocco, there are not many problemists posting questions about 3d geometry, keep up the great work!

Valentin Duringer - 12 months ago

Log in to reply

Thank You!

Rocco Dalto - 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...