Inscribed Polygons.

Level pending

The above diagram represents a regular n g o n n - gon inscribed in a circle, where n n is an odd integer and n 5 n \geq 5 and x x is the length of a side of the n g o n n - gon .

Let A n A_{n} and A c A_{c} be area of the inscribed n g o n n - gon and the circumscribed circle respectively.

(1) Find A n A_{n} .

(2) Find A 101 A_{101} .

(3) Find A c A_{c} .

(4) Express the answer as A c A 101 A_{c} - A_{101} to eight decimal places.


The answer is 0.05700917.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Nov 29, 2019

Let n n be odd integer and n 5 n \geq 5 .

Using the diagram directly above we have:

x = 2 r sin ( π n ) x = 2r\sin(\dfrac{\pi}{n}) and the height h = r cos ( π n ) h = r\cos(\dfrac{\pi}{n}) \implies

The area A n = n 2 sin ( 2 π n ) r 2 A_{n} = \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) r^2

M N = r + h = r ( 1 + cos ( π n ) = 2 r cos 2 ( π 2 n ) |\overline {\rm MN}| = r + h = r(1 + \cos(\dfrac{\pi}{n}) = 2r\cos^2(\dfrac{\pi}{2n})

Using right M N P \triangle{MNP} in the first diagram above we have:

M N 2 = ( 2 r cos 2 ( π 2 n ) ) 2 = 2 1 2 + 3 2 = 450 r = 15 2 2 sec 2 ( π 2 n ) = 15 2 sec 2 ( π 2 n ) |\overline {\rm MN}|^2 = (2r\cos^2(\dfrac{\pi}{2n}))^2 = 21^2 + 3^2 = 450 \implies r = \dfrac{15\sqrt{2}}{2}\sec^2(\dfrac{\pi}{2n}) = \dfrac{15}{\sqrt{2}}\sec^2(\dfrac{\pi}{2n})

Let r n = 15 2 sec 2 ( π 2 n ) r_{n} = \dfrac{15}{\sqrt{2}}\sec^2(\dfrac{\pi}{2n}) \implies

A n = n 2 sin ( 2 π n ) r n 2 = A_{n} = \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) r^2_{n} = n 2 sin ( 2 π n ) ( 225 2 ) sec 4 ( π 2 n ) \boxed{\dfrac{n}{2}\sin(\dfrac{2\pi}{n})(\dfrac{225}{2})\sec^4(\dfrac{\pi}{2n})}

Using n = 101 A 100 = 22725 4 sin ( 2 π 101 ) sec 4 ( π 202 ) n = 101 \implies A_{100} =\dfrac{22725}{4}\sin(\dfrac{2\pi}{101})\sec^4(\dfrac{\pi}{202})

353.372164 \approx \boxed{353.372164} .

Using r n = 15 2 sec 2 ( π 2 n ) lim n r n 2 = 225 2 r_{n} = \dfrac{15}{\sqrt{2}}\sec^2(\dfrac{\pi}{2n}) \implies \lim_{n \rightarrow \infty} r^2_{n} = \dfrac{225}{2}

and using the inequality cos ( x ) < sin ( x ) x < 1 \cos(x) < \dfrac{\sin(x)}{x} < 1 we have:

π cos ( 2 π n ) < n 2 sin ( 2 π n ) < π \pi\cos(\dfrac{2\pi}{n}) < \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) < \pi and π lim n cos ( 2 π n ) = π \pi\lim_{n \rightarrow \infty} \cos(\dfrac{2\pi}{n}) = \pi

\therefore by squeeze play theorem lim n n 2 sin ( 2 π n ) = π \implies \lim_{n \rightarrow \infty} \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) = \pi

\implies

A c = lim n n 2 sin ( 2 π n ) r n 2 = lim n n 2 sin ( 2 π n ) lim n r n 2 = 225 2 π 353.4291735 A_{c} = \lim_{n \rightarrow \infty} \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) r^2_{n} = \lim_{n \rightarrow \infty} \dfrac{n}{2}\sin(\dfrac{2\pi}{n}) * \lim_{n \rightarrow \infty} r^2_{n} = \dfrac{225}{2}\pi \approx \boxed{353.4291735} .

A c A 101 0.05700917 \implies A_{c} - A_{101} \approx \boxed{0.05700917} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...