Inscribed Truncated Cone.

Level pending

In the diagram above, a truncated cone is inscribed in a sphere of radius r r such that the larger base of the truncated cone is a great circle of the sphere.

Let m m be the radius of the smaller base.

Find the ratio m r \dfrac{m}{r} that maximizes the volume of the inscribed truncated cone as described above.


The answer is 0.646488.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 5, 2020

m = r cos ( θ ) m = r\cos(\theta) and h = r sin ( θ ) h = r\sin(\theta)

\implies the volume of the truncated cone V = π 3 ( r 2 + r 2 cos ( θ ) + r 2 cos 2 ( θ ) ) r sin ( θ ) = V = \dfrac{\pi}{3}(r^2 + r^2\cos(\theta) + r^2\cos^2(\theta))r\sin(\theta) =

π 3 r 3 ( 2 sin ( θ ) + 1 2 sin ( 2 θ ) sin 3 ( θ ) ) \dfrac{\pi}{3}r^3(2\sin(\theta) + \dfrac{1}{2}\sin(2\theta) -\sin^3(\theta))

d V d θ = π 3 r 3 ( 2 cos ( θ ) + cos ( 2 θ ) 3 sin 2 ( θ ) cos ( θ ) ) = \implies \dfrac{dV}{d\theta} = \dfrac{\pi}{3}r^3(2\cos(\theta) + \cos(2\theta) - 3\sin^2(\theta)\cos(\theta)) =

π 3 r 3 ( 2 cos ( θ ) + 2 cos 2 ( θ ) 1 3 ( 1 cos 2 ( θ ) ) cos ( θ ) ) \dfrac{\pi}{3}r^3(2\cos(\theta) + 2\cos^2(\theta) - 1 - 3(1 - \cos^2(\theta))\cos(\theta))

3 cos 3 ( θ ) + 2 cos 2 ( θ ) cos ( θ ) 1 = 0 \implies 3\cos^3(\theta) + 2\cos^2(\theta) - \cos(\theta) - 1 = 0

Let u = cos ( θ ) 3 u 3 + 2 u 2 u 1 = 0 u = \cos(\theta) \implies 3u^3 + 2u^2 - u - 1 = 0

To solve the cubic:

To eliminate the square term let u = w 2 9 u = w - \dfrac{2}{9}

729 w 3 351 w 173 = 0 w 3 13 27 w 173 729 = 0 \implies 729w^3 - 351w - 173 = 0 \implies w^3 - \dfrac{13}{27}w - \dfrac{173}{729} = 0

Let w = z + 13 81 z 531441 z 6 1261172 z 3 + 2197 = 0 w = z + \dfrac{13}{81z} \implies 531441z^6 - 1261172z^3 + 2197 = 0 \implies

z 3 = 173 + 27 29 1458 = R = R ( cos ( 2 π n ) + i sin ( 2 π n ) ) z^3 = \dfrac{173 + 27\sqrt{29}}{1458} = R = R(\cos(2\pi n) + i\sin(2\pi n)) \implies

z = R 1 3 ( cos ( 2 π n 3 ) + i sin ( 2 π n 3 ) z = R^{\frac{1}{3}}(\cos(\dfrac{2\pi n}{3}) + i\sin(\dfrac{2\pi n}{3}) \implies

z = R 1 3 , R 1 3 ( 1 2 ± i 3 2 ) z = R^{\frac{1}{3}}, R^{\frac{1}{3}}(-\dfrac{1}{2} \pm i\sqrt{\dfrac{3}{2}})

In this case we have exactly one real root for 3 u 3 + 2 u 2 u 1 = 0 3u^3 + 2u^2 - u - 1 = 0

Using z = R 1 3 w = R 1 3 + 13 81 R 1 3 z = R^{\frac{1}{3}} \implies w = R^{\frac{1}{3}} + \dfrac{13}{81 R^{\frac{1}{3}}} \implies

u = R 2 3 2 9 R 1 3 + 13 81 R 1 3 u = \dfrac{R^{\frac{2}{3}} - \dfrac{2}{9}R^{\frac{1}{3}} + \dfrac{13}{81}}{R^{\frac{1}{3}}} = cos ( θ ) 0.646488 = \cos(\theta) \approx 0.646488

m = r cos ( θ ) m r = 0.646488 m = r\cos(\theta) \implies \dfrac{m}{r} = \boxed{0.646488} .

Checking for relative max at θ = θ 0 \theta = \theta_{0} .

Incidentally θ 0 0.867824 \theta_{0} \approx 0.867824 radians.

cos ( θ ) = 0.646488 sin ( θ ) = 1 cos 2 ( θ ) = 0.762924 \cos(\theta) = 0.646488 \implies \sin(\theta) = \sqrt{1 - \cos^2(\theta)} = 0.762924

and

d 2 V d θ 2 θ = θ 0 = \dfrac{d^{2}V}{d\theta^{2}}|_{\theta = \theta_{0}} = π 3 r 3 sin ( θ ) ( 9 cos 2 ( θ ) 4 cos ( θ ) + 1 ) θ = θ 0 = 4.79715 < 0 \dfrac{\pi}{3}r^3\sin(\theta)(-9\cos^2(\theta) - 4\cos(\theta) + 1)|_{\theta = \theta_{0}} = -4.79715 < 0

\implies relative max at θ = θ 0 \theta = \theta_{0} .

Quick Note: In solving the cubic above I used the following method:

Given: a x 3 + b x 2 + c x + d = 0 ax^3 + bx^2 + cx + d = 0 we let x = u b 3 a x = u - \dfrac{b}{3a} to eliminate the square term.

This results in the cubic: u 3 + P u + Q u^3 + Pu + Q .

Letting u = z P 3 z u = z - \dfrac{P}{3z} we obtain a quadratic in z 3 z^3 as was the case above.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...