Evaluate , to the nearest integer
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We know that ∫ 0 a f ( x ) d x = ∫ 0 a f ( a − x ) d x , and ∫ 0 2 a f ( x ) d x = 2 ∫ 0 a f ( x ) d x for f ( x ) = f ( 2 a − x ) . Let us name these basic identities as P 1 and P 2 respectively.
I = ∫ 0 π x ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x ... (i)
⇒ I = ∫ 0 π ( π − x ) ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x (using P 1 ) ... (ii)
Adding (i) and (ii) , 2 I = π ∫ 0 π ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x
⇒ 2 I = 2 π ∫ 0 2 π ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x (using P 2 ).... (iii)
⇒ 2 I = 2 π ∫ 0 2 π ( sin 2 ( cos x ) + cos 2 ( sin x ) ) d x (using P 1 ) ... (iv)
Adding (iii) and (iv), 4 I = 2 π ∫ 0 2 π 2 d x (using sin 2 + cos 2 = 1 )
⇒ I = 2 π 2
Clearly, answer is 6 0 7
_ Feel free to ask the proof of P 1 and P 2 in case you are not aware of them _