Inside Itself!?

Level 2

Evaluate 123 0 π x ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x \displaystyle 123\int\limits_0^{\pi}x(\sin^2(\sin x)+\cos^2(\cos x)) dx , to the nearest integer


The answer is 607.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jatin Yadav
Jan 28, 2014

We know that 0 a f ( x ) d x = 0 a f ( a x ) d x \displaystyle \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx , and 0 2 a f ( x ) d x = 2 0 a f ( x ) d x \displaystyle \int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx for f ( x ) = f ( 2 a x ) f(x) = f(2a - x) . Let us name these basic identities as P 1 P _ {1} and P 2 P_{2} respectively.

I = 0 π x ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x I = \displaystyle \int_{0}^{\pi} x(\sin^2(\sin x) + \cos^2 (\cos x)) dx ... (i)

I = 0 π ( π x ) ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x \Rightarrow I = \displaystyle \int_{0}^{\pi} (\pi - x)(\sin^2(\sin x) + \cos^2 (\cos x)) dx (using P 1 P_{1} ) ... (ii)

Adding (i) and (ii) , 2 I = π 0 π ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x 2I = \pi \displaystyle \int_{0}^{\pi} (\sin^2(\sin x) + \cos^2 (\cos x)) dx

2 I = 2 π 0 π 2 ( sin 2 ( sin x ) + cos 2 ( cos x ) ) d x \Rightarrow 2I = 2 \pi \displaystyle \int_{0}^{\frac{\pi}{2}} (\sin^2(\sin x) + \cos^2 (\cos x)) dx (using P 2 P_{2} ).... (iii)

2 I = 2 π 0 π 2 ( sin 2 ( cos x ) + cos 2 ( sin x ) ) d x \Rightarrow 2I = \displaystyle 2\pi \int_{0}^{\frac{\pi}{2}} (\sin^2(\cos x) + \cos^2 (\sin x)) dx (using P 1 P_{1} ) ... (iv)

Adding (iii) and (iv), 4 I = 2 π 0 π 2 2 d x \displaystyle 4I = 2\pi \int_{0}^{\frac{\pi}{2}} 2 dx (using sin 2 + cos 2 = 1 \sin^2 + \cos^2 = 1 )

I = π 2 2 \Rightarrow \boxed{I = \frac{\pi^2}{2}}

Clearly, answer is 607 607

_ Feel free to ask the proof of P 1 P_{1} and P 2 P_{2} in case you are not aware of them _

did the same way

Anirudha Nayak - 7 years, 4 months ago

Log in to reply

nice proof by the way

Anirudha Nayak - 7 years, 4 months ago

nice solution

jinay patel - 7 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...