Inspiratio!

Geometry Level 4

In the rhombus A B C D ABCD of interior angle 6 0 60^{\circ} , point G G is selected on segment C D \overline{CD} , such that D G : C G = 1 : 2 \overline{DG}:\overline{CG} = 1:2 . In addition, B G E = B G F = 3 0 \angle BGE = \angle BGF = 30^{\circ} .

If the ratio of the area of the quadrilateral E G F B EGFB to area of the rhombus A B C D ABCD can be expressed as a b \dfrac{a}{b} , where a a and b b are both coprime positive integers, input a + b a + b as your answer.

Challenge: \text{Challenge:} Solve this problem without any trigonometry.


Inspiration.


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Maria Kozlowska
Mar 12, 2021

Quadrilateral EGFB is cyclic because angles B and G add to 180 degrees. This means BE=BF.

B F H \triangle BFH is congruent to the B E J \triangle BEJ . B G J \triangle BGJ is congruent to the G H I \triangle GHI . This means that the area of the quadrilateral EGFB is equal to the area of the equilateral B G I \triangle BGI . Segment B G = 7 3 D C BG = \dfrac{ \sqrt{7} }{3} DC . Area of the rhombus is twice the area of the equilateral triangle with the same side length. The ratio of the area of the quadrilateral EGFB to area of the rhombus ABCD is 7 2 9 = 7 18 \dfrac{ 7}{2*9}=\dfrac{ 7}{18}

Nice and short!

Michael Huang - 3 months ago

Figure 1 Figure 1 If we use an isometric grid as shown on figure 1, we see that E B A B = B F B C = 7 15 \dfrac{EB}{AB} =\dfrac{BF}{BC}=\dfrac{7}{15} (see at the end of the solution for a more elaborate explanation)

Now, G B E \triangle GBE and G B A \triangle GBA share a common height from vertex G G , thus, [ G E B ] [ G A B ] = E B A B = 7 15 [ G E B ] = 7 15 [ G A B ] = 7 15 [ D A B ] = 7 15 ( 1 2 [ A B C D ] ) = 7 30 [ A B C D ] ( 1 ) \begin{aligned} & \dfrac{\left[ GEB \right]}{\left[ GAB \right]}=\dfrac{EB}{AB}=\dfrac{7}{15} \\ & \Rightarrow \left[ GEB \right]=\dfrac{7}{15}\left[ GAB \right]=\dfrac{7}{15}\left[ DAB \right]=\dfrac{7}{15}\left( \dfrac{1}{2}\left[ ABCD \right] \right)=\dfrac{7}{30}\left[ ABCD \right] \ \ \ \ \ (1)\\ \end{aligned} Likewise, G B F \triangle GBF and G B C \triangle GBC share a common height from vertex G, thus, [ G B F ] [ G B C ] = B F B C = 7 15 [ G B F ] = 7 15 [ G B C ] ( 2 ) \begin{aligned} & \dfrac{\left[ GBF \right]}{\left[ GBC \right]}=\dfrac{BF}{BC}=\dfrac{7}{15} \\ & \Rightarrow \left[ GBF \right]=\dfrac{7}{15}\left[ GBC \right] \ \ \ \ \ (2)\\ \end{aligned} Next, [ G B C ] [ D B C ] = 1 2 C B C G sin C 1 2 C B C D sin C = C G C D = 2 3 [ G B C ] = 2 3 [ D B C ] ( 3 ) \begin{aligned} & \dfrac{\left[ GBC \right]}{\left[ DBC \right]}=\dfrac{\cancel{\dfrac{1}{2}CB}\cdot CG\cdot \bcancel{\sin C}}{\cancel{\dfrac{1}{2}CB}\cdot CD\cdot \bcancel{\sin C}}=\dfrac{CG}{CD}=\dfrac{2}{3} \\ & \Rightarrow \left[ GBC \right]=\dfrac{2}{3}\left[ DBC \right] \ \ \ \ \ (3)\\ \end{aligned} ( 2 ) , ( 3 ) [ G B F ] = 7 15 ( 2 3 [ D B C ] ) = 14 45 ( 1 2 [ A B C D ] ) [ G B F ] = 7 45 [ A B C D ] ( 4 ) \left( 2 \right),\left( 3 \right)\Rightarrow \left[ GBF \right]=\dfrac{7}{15}\left( \dfrac{2}{3}\left[ DBC \right] \right)=\dfrac{14}{45}\left( \dfrac{1}{2}\left[ ABCD \right] \right)\Rightarrow \left[ GBF \right]=\dfrac{7}{45}\left[ ABCD \right] \ \ \ \ \ (4) Finally, [ E G F B ] = [ G E B ] + [ G B F ] = ( 1 ) , ( 4 ) 7 30 [ A B C D ] + 7 45 [ A B C D ] = 7 18 [ A B C D ] \left[ EGFB \right]=\left[ GEB \right]+\left[ GBF \right]\overset{\left( 1 \right),\left( 4 \right)}{\mathop{=}}\,\dfrac{7}{30}\left[ ABCD \right]+\dfrac{7}{45}\left[ ABCD \right]=\dfrac{7}{18}\left[ ABCD \right] i.e. [ E G F B ] [ A B C D ] = 7 18 \dfrac{\left[ EGFB \right]}{\left[ ABCD \right]}=\dfrac{7}{18} For the answer, a = 7 a=7 , b = 18 b=18 , thus, a + b = 25 a+b=\boxed{25} .


\ \ \

Details to justify that in the grid, E G F \angle EGF is indeed 60 60{}^\circ and B G F = 30 \angle BGF=30{}^\circ , i.e. F F and E E are the correct (given) points.

\ \ \

Figure 2 Figure 2

Focusing around point G G , triangle congruency verifies that E G F = α + γ = β + γ = 60 \angle ΕGF=\alpha +\gamma=\beta +\gamma=60{}^\circ (figure 2).

Figure 3 Figure 3 Furthermore, since E B F + E G F = 120 + 60 = 180 \angle ΕBF+\angle EGF=120{}^\circ +60{}^\circ =180{}^\circ , E G F B EGFB is a cyclic quadrilateral, thus B G F = B E F = 30 \angle BGF=\angle BEF=30{}^\circ (figure 3).

David Vreken
Mar 16, 2021

The shaded area can be cut and rearranged to fill out 7 7 out of 18 18 equilateral triangles as follows:

which makes the ratio 7 18 \cfrac{7}{18} , so a = 7 a = 7 , b = 18 b = 18 , and a + b = 25 a + b = \boxed{25} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...