Inspiration @Aditya Raut

A B C 0 A B C \overline{{ABC0ABC}} be a 7 digit number.

Let the number of values of A B C 0 A B C \overline{{ABC0ABC}} divisible by 11 be x x .

Let the number of values of A B C 0 A B C \overline{{ABC0ABC}} divisible by 121 be y y .

Let the number of values of A B C 0 A B C \overline{{ABC0ABC}} divisible by 1331 be z z .

Then find the value of x + y + z x+y+z .

Details and Assumptions

The letters A,B,C do not necessarily stand for distinct digit.

The fourth digit of the number is zero.


The answer is 89.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 15, 2015

We note that A B C 0 A B C = 10001 ( 100 A + 10 B + C ) \overline{ABC0ABC} = 10001(100A+10B+C) .

Since 10001 10001 is indivisible by 11 11 .

{ A B C 0 A B C ( m o d 11 ) A B C ( m o d 11 ) A B C 0 A B C ( m o d 121 ) A B C ( m o d 121 ) A B C 0 A B C ( m o d 1331 ) A B C ( m o d 1331 ) \Rightarrow \begin{cases} \overline{ABC0ABC} \pmod {11} & \equiv \overline{ABC} \pmod{11} \\ \overline{ABC0ABC} \pmod {121} & \equiv \overline{ABC} \pmod{121} \\ \overline{ABC0ABC} \pmod {1331} & \equiv \overline{ABC} \pmod{1331} \end{cases}

{ 11 A B C { 110 , 121 , 132 , . . . 990 } x = 81 121 A B C { 121 , 242 , 363 , . . . 968 } y = 8 1331 A B C { } z = 0 \Rightarrow \begin{cases} 11|\overline{ABC} & \in \{110,121,132,...990\} & \Rightarrow x = 81 \\ 121|\overline{ABC} & \in \{121, 242, 363, ... 968\} & \Rightarrow y = 8 \\ 1331|\overline{ABC} & \in \{\space \} & \Rightarrow z = 0 \\ \end{cases}

x + y + z = 81 + 8 + 0 = 89 \Rightarrow x+y+z = 81+8+0 = \boxed{89}

Very nearly the same to how I did it. When I was finding the values of x x and y y . I noticed that I was looking for 3 digit multiples of 11 and 121. The smallest three-digit multiple of 11 is 110 which is 10 × 11 10\times 11 and the largest is 990 which is 90 × 11 90\times 11 . Therefore x = 90 10 + 1 = 81 x = 90 - 10 + 1 = 81 and the process is similar for y y where the largest and smallest values are 968 = 8 × 121 968 = 8\times 121 and 121 = 1 × 121 121 = 1\times 121 respectively giving y = 8 1 + 1 = 8 y = 8 - 1 + 1 = 8 .

Josh Banister - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...