Inspiration: Ramanujan

Algebra Level 3

1 + 1 + 2 1 + 3 1 + 4 1 + 5 = ? \sqrt {1+ \sqrt { 1+2\sqrt { 1+3\sqrt { 1+4\sqrt { 1+5\sqrt{\cdots} } } } } } = \, ?


Inspiration .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Feb 13, 2016

According to Ramanujan (Equation (27) in Nested Radical ):

x + 1 = 1 + x 1 + ( x + 1 ) 1 + ( x + 2 ) 1 + . . . x + 1 = \sqrt{1+x\sqrt{1+(x+1)\sqrt{1+(x+2)\sqrt{1+...}}}}

For 1 + 1 + 2 1 + 3 1 + . . . \sqrt{1+\sqrt{1+2\sqrt{1+3\sqrt{1+...}}}} , implies that x = 1 x=1 , therefore,

1 + 1 + 2 1 + 3 1 + . . . = 1 + 1 = 2 \sqrt{1+\sqrt{1+2\sqrt{1+3\sqrt{1+...}}}} = 1 + 1 = \boxed{2}

If it is true, then it must be 1 + 1 1 + ( 1 + 1 ) 1 + ( 1 + 2 ) 1 + = = 2 \sqrt { 1 + 1 \sqrt { 1 + ( 1 + 1 ) \sqrt { 1 + ( 1 + 2 ) \sqrt { 1 + \cdots = } } } } = 2

. . - 3 months, 2 weeks ago

This is an interesting problem. Visit http://mathworld.wolfram.com/NestedRadical.html for a detailed solution. 1 + 1 + 2 1 + 3 1 + 4 1 + 5 = 1 + 3 = 2 \sqrt {1+ \sqrt { 1+2\sqrt { 1+3\sqrt { 1+4\sqrt { 1+5\sqrt{\cdots} } } } } }=\sqrt{1+3}=2

4 = ± 2 ? \sqrt { 4 } = \pm 2 \text { ? }

. . - 3 months, 2 weeks ago
. .
Feb 28, 2021

1 + 1 + 2 1 + 3 1 + 4 1 + 5 = 1 + 3 4 5 6 = 2 \sqrt { 1 + \sqrt { 1 + 2 \sqrt { 1 + 3 \sqrt { 1 + 4 \sqrt { 1 + 5 \sqrt { \cdots } } } } } } = \sqrt { 1 + \sqrt { 3 \sqrt { 4 \sqrt { 5 \sqrt { 6 \sqrt { \cdots } } } } } } = \boxed { 2 }

Abdelghani Ssoris
Feb 14, 2016

We note that:

So

We get

We substitute the value of (n+3) by putting l=3 in the first equation:

And so on:

Then we get the result, putting n=1:

Therefore

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...