A geometry problem by Priyanshu Mishra

Geometry Level 4

If x 2 + y 2 + 14 x + 6 y 6 = 0 x^2 + y^2 +14x + 6y -6 = 0 for real x x and y y , find the maximum possible value of 3 x + 4 y 3x+4y .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

x 2 + y 2 + 14 x + 6 y 6 = 0 ( x + 7 ) 2 49 + ( y + 3 ) 2 9 6 = 0 ( x + 7 ) 2 + ( y + 3 ) 2 = 64 \begin{aligned} x^2+y^2+14x+6y-6 & = 0 \\ (x+7)^2 - 49 + (y+3)^2 - 9 - 6 & = 0 \\ (x+7)^2 + (y+3)^2 & = 64 \end{aligned}

That is an equation of a circle with a radius pf 8. We can let { x + 7 = 8 cos θ x = 8 cos θ 7 y + 3 = 8 sin θ y = 8 sin θ 3 \begin{cases} x+7 = 8\cos \theta & \implies x = 8\cos \theta - 7 \\ y+3 = 8\sin \theta & \implies y = 8\sin \theta - 3 \end{cases}

Therefore,

X = 3 x + 4 y = 3 ( 8 cos θ 7 ) + 4 ( 8 sin θ 3 ) = 24 cos θ + 32 sin θ 33 = 40 ( 3 5 cos θ + 4 5 sin θ ) 33 = 40 sin ( θ + tan 1 3 4 ) 33 X is maximum when sin ( θ + tan 1 3 4 ) = 1 X m a x = 40 33 = 7 \begin{aligned} X & = 3x + 4y \\ & = 3(8\cos \theta - 7)+4(8\sin \theta - 3) \\ & = 24\cos \theta + 32\sin \theta - 33 \\ & = 40\left(\frac 35 \cos \theta + \frac 45 \sin \theta \right) - 33 \\ & = 40\sin \left(\theta + \tan^{-1} \frac 34 \right) - 33 & \small {\color{#3D99F6} X \text{ is maximum when }\sin \left(\theta + \tan^{-1} \frac 34 \right)=1} \\ \implies X_{max} & = 40-33 = \boxed{7} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...