Inspiration: Vicky Vignesh

N = 2 200 + 3 300 + 4 400 \large N = 2^{200} + 3^{300} + 4^{400} Find the unit digit of N N .


Inspiration .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 11, 2016

Since 10 = 2 × 5 10=2\times 5 , let us consider the prime factors separately.

N 2 200 + 3 300 + 4 400 (mod 2) 0 + 1 + 0 1 (mod 2) N 2 n + 1 (mod 10) where n is an integer. \begin{aligned} N & \equiv 2^{200}+3^{300}+4^{400} \text{ (mod 2)} \\ & \equiv 0+1+0 \equiv 1 \text{ (mod 2)} \\ \implies N & \equiv 2n+1 \text{ (mod 10)} & \small \color{#3D99F6} \text{where } n \text{ is an integer.} \end{aligned}

Since 2, 3 and 4 is each a coprime integer with 5, we can applies Euler's theorem as follows.

N 2 200 + 3 300 + 4 400 (mod 5) 2 200 mod ϕ ( 5 ) + 3 300 mod ϕ ( 5 ) + 4 400 mod ϕ ( 5 ) (mod 5) Euler’s totient function ϕ ( 5 ) = 4 2 200 mod 4 + 3 300 mod 4 + 4 400 mod 4 (mod 5) 2 0 + 3 0 + 4 0 1 + 1 + 1 3 (mod 5) \begin{aligned} N & \equiv 2^{200}+3^{300}+4^{400} \text{ (mod 5)} \\ & \equiv 2^{200 \text{ mod }\phi(5)}+3^{300 \text{ mod }\phi(5)}+4^{400 \text{ mod }\phi(5)} \text{ (mod 5)} & \small \color{#3D99F6} \text{Euler's totient function }\phi(5) = 4 \\ & \equiv 2^{200 \text{ mod }4}+3^{300 \text{ mod }4}+4^{400 \text{ mod }4} \text{ (mod 5)} \\ & \equiv 2^0+3^0+4^0 \equiv 1+1+1 \equiv 3 \text{ (mod 5)} \end{aligned}

Therefore, we have:

N 3 (mod 5) 2 n + 1 3 (mod 5) n = 1 N 2 n + 1 3 (mod 10) \begin{aligned} N & \equiv 3 \text{ (mod 5)} \\ 2n+1 & \equiv 3 \text{ (mod 5)} \\ \implies n & = 1 \\ \implies N & \equiv 2n+1 \equiv \boxed{3} \text{ (mod 10)} \end{aligned}

Michael Huang
Dec 10, 2016

Since we want to determine the unit digit of N N , set N m o d 10 N \bmod 10 . For the computation, since 2 2 and 4 4 are not relatively prime to 10 10 , consider evaluating m o d 2 \bmod 2 and m o d 5 \bmod 5 separately.


Evaluating Separately

For m o d 2 \bmod 2 , since 3 1 m o d 2 3 \equiv 1 \bmod 2 and 4 2 0 m o d 2 4 \equiv 2 \equiv 0 \bmod 2 , N 1 m o d 2 N \equiv 1 \bmod 2 .

For m o d 5 \bmod 5 , since 5 5 is relatively prime to 2 , 3 , 4 2,3,4 , apply Euler's theorem , so a 4 1 m o d 5 a^4 \equiv 1 \bmod 5 where gcd ( a , 5 ) = 1 \gcd(a,5) = 1 and ϕ ( 5 ) = 4 \phi(5) = 4 . So N = ( 2 4 ) 50 + ( 3 4 ) 50 + ( 4 4 ) 50 1 + 1 + 1 m o d 5 3 m o d 5 \begin{array}{rl} N &= \left(2^{4}\right)^{50} + \left(3^{4}\right)^{50} + \left(4^{4}\right)^{50}\\ &\equiv 1 + 1 + 1 \bmod 5\\ &\equiv 3 \bmod 5 \end{array}


Final Results

We then have N 1 m o d 2 N 3 m o d 5 \begin{array}{rl} N &\equiv 1 \bmod 2\\ N &\equiv 3 \bmod 5 \end{array} Observe that N N must be an odd integer (which immediately satisfies the first congruence). Thus, N = 3 \boxed{N = 3} , being the odd integer satisfying the system of congruences.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...