Inspired by 1989

Geometry Level 4

In a convex quadrilateral A B C D ABCD , the midpoints of B C BC and A D AD are E E and F F , respectively. Given that θ = S E D A + S F B C S A B C D \theta = S_{\triangle EDA}+S_{\triangle FBC}-S_{ABCD} , find θ θ \theta^\theta .

0 It is imaginary It depends No fixed values 1 None of these choices

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) , D ( x 4 , y 4 ) E ( x 2 + x 3 2 , y 2 + y 3 2 ) , F ( x 1 + x 4 2 , y 1 + y 4 2 ) A(x_1,y_1),B(x_2,y_2),C(x_3,y_3),D(x_4,y_4)\Rightarrow E\left(\frac{x_2+x_3}{2},\frac{y_2+y_3}{2}\right),F\left(\frac{x_1+x_4}{2},\frac{y_1+y_4}{2}\right)

Using the shoelace formula, we have S E D A + S F B C = 1 2 ( x 1 x 4 x 2 + x 3 2 x 1 y 1 y 4 y 2 + y 3 2 y 1 + x 2 x 1 + x 4 2 x 3 x 2 y 2 y 1 + y 4 2 y 3 y 2 ) = x 1 y 4 x 4 y 1 + x 4 y 3 x 3 y 4 + x 3 y 2 x 2 y 3 + x 2 y 1 x 1 y 2 2 S_{\triangle EDA}+S_{\triangle FBC}=\frac{1}{2}\left(\begin{vmatrix} x_1&x_4&\frac{x_2+x_3}{2}&x_1\\y_1&y_4&\frac{y_2+y_3}{2}&y_1 \end{vmatrix}+\begin{vmatrix} x_2&\frac{x_1+x_4}{2}&x_3&x_2\\y_2&\frac{y_1+y_4}{2}&y_3&y_2 \end{vmatrix}\right)=\frac{x_1y_4-x_4y_1+x_4y_3-x_3y_4+x_3y_2-x_2y_3+x_2y_1-x_1y_2}{2}

By inspection, this also appears to be the area of the quadrilateral when shoelace is applied. Hence θ = 0 \theta=0 and the answer is undefined, which is none of the above.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...