Inspired by 3 SHS Bandung

Geometry Level 3

36 sin 2 x + 25 sin x \large \frac { 36\sin ^{ 2 }{ x + 25 } }{ \sin { x } }

Find the minimum of the expression above, for 0 x π 0 \le x \le \pi .


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

36 sin 2 x + 25 sin x = 36 sin x + 25 sin x \frac { 36\sin ^{ 2 }{ x } +25 }{ \sin { x } } =\quad 36\sin x+\frac { 25 }{ \sin { x } }

with A M G M AM-GM

36 sin x + 25 sin x 2 ( 36 sin x ) ( 25 sin x ) = 2 ( 36 ) ( 25 ) = 60 36\sin x+\frac { 25 }{ \sin { x } } \quad \ge \quad 2\sqrt { (36\sin { x } )(\frac { 25 }{ \sin { x } } ) } =2\sqrt {(36)(25)}=\boxed{60}

and it could be happen when sin x = 5 6 \sin { x } =\frac { 5 }{ 6 }

Good solution.

Thanks for including the equality condition, showing that we indeed have the greatest lower bound.

Calvin Lin Staff - 4 years, 5 months ago

Yes, AM-GM will do the trick here.

Jun Arro Estrella - 4 years, 5 months ago

Did the same way

I Gede Arya Raditya Parameswara - 4 years, 3 months ago
Tapas Mazumdar
Dec 28, 2016

Let,

f ( x ) = 36 sin 2 x + 25 sin x = 36 sin x + 25 csc x f(x) = \dfrac{36 \sin^2 x + 25}{\sin x} = 36 \sin x + 25 \csc x

Differentiating f ( x ) f(x) w.r.t. x x we get,

36 cos x 25 csc x cot x = 0 36 cos x 25 cos x sin 2 x = 0 cos x ( 36 25 sin 2 x ) = 0 cos x = 0 or sin x = ± 5 6 sin x = ± 1 or sin x = ± 5 6 \begin{aligned} & 36 \cos x - 25 \csc x \cot x = 0 \\ \\ \implies & 36 \cos x - 25 \dfrac{\cos x}{\sin^2 x} = 0 \\ \\ \implies & \cos x \left( 36 - \dfrac{25}{\sin^2 x} \right) = 0 \\ \implies & \cos x = 0 ~~ \text{or} ~~ \sin x = \pm \dfrac{5}{6} \\ \implies & \sin x = \pm 1 ~~ \text{or} ~~ \sin x = \pm \dfrac{5}{6} \end{aligned}

Since, 0 x π 0 \le x \le \pi , therefore negative values of sin x \sin x are unacceptable.

Thus, we have sin x = 1 \sin x = 1 or sin x = 5 6 \sin x = \dfrac{5}{6} . One of these values will give us the maximum value of the function and the other one the minimum value.

Checking, we get,

sin x = 1 f ( x ) = 61 sin x = 5 6 f ( x ) = 60 \begin{aligned} \sin x = 1 & \implies & f(x) = 61 \\ \sin x = \dfrac 56 & \implies & f(x) = 60 \end{aligned}

Thus, the minimum value of f ( x ) f(x) is 60 \boxed{60} .

You can actually just minimize y = 36 z 2 + 25 z \frac{36 z^{2} + 25}{z} as well. Makes the calculus much easier.

Steven Chase - 4 years, 5 months ago

Log in to reply

Oh yes. I see your point!

Thank you for letting me know.

Tapas Mazumdar - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...