Inspired by a Brilliant problem

Algebra Level 2

n = 1 2 1 + 1 2 3 + 1 2 5 + 1 2 7 + \large n = \frac{1}{2^1}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\cdots

What is n n ?

1 8 \frac 18 1 6 \frac 16 1 5 \frac 15 1 3 \frac 13 1 4 \frac 14 3 4 \frac 34 2 3 \frac 23 3 8 \frac 38

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zach Abueg
May 29, 2017

n = 1 2 1 + 1 2 3 + 1 2 5 + = n = 1 1 2 2 n 1 = n = 1 2 ( 1 4 ) n = 1 2 1 1 4 = 2 3 \begin{aligned} \displaystyle n & = \frac{1}{2^1} + \frac{1}{2^3} + \frac{1}{2^5} + \cdots \\ & = \sum_{n \ = \ 1}^{\infty} \frac{1}{2^{2n - 1}} \\ & = \sum_{n \ = \ 1}^{\infty} 2 \cdot \bigg(\frac 14\bigg)^n \\ & = \frac{\displaystyle \frac 12}{\displaystyle 1 - \frac 14} \\ & = \frac 23 \end{aligned}

Alternative solution:

n = 1 2 + 1 8 + 1 32 + = 1 2 + 1 4 ( 1 2 + 1 8 + ) = 1 2 + 1 4 n 3 4 n = 1 2 n = 2 3 \displaystyle \begin{aligned} n & = \frac{1}{2} + \frac{1}{8} + \frac{1}{32} + \cdots \\ & = \frac 12 + \frac 14 \left(\frac 12 + \frac 18 + \cdots\right) \\ & = \frac 12 + \frac 14n \\ \frac 34n & = \frac 12 \\ n & = \frac 23 \end{aligned}

1 2 1 + 1 2 3 + 1 2 5 + = 1 2 + 1 2 2 + 1 2 3 + 1 2 4 + ( 1 2 2 + 1 2 4 + 1 2 6 + ) = 1 1 3 = 2 3 \frac{1}{2^1}+\frac{1}{2^3}+\frac{1}{2^5}+\dots=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\dots-(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\dots)=1-\frac{1}{3}=\frac{2}{3}

This can be easily verified with these figures:

Akeel Howell
Jul 9, 2017

n = 1 2 1 + 1 2 3 + 1 2 5 + 1 2 7 + 4 n = 4 2 1 + 4 2 3 + 4 2 5 + 4 2 7 + = 2 + n n = 2 3 \large n = \frac{1}{2^1}+\frac{1}{2^3}+\frac{1}{2^5}+\frac{1}{2^7}+\cdots \\ \large \implies 4n = \frac{4}{2^1}+\frac{4}{2^3}+\frac{4}{2^5}+\frac{4}{2^7}+\cdots = 2 + n \\ \large \therefore n = \frac{2}{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...