Inspired by a Physics Problem

Geometry Level 3

f ( x ) = 1 cos x sin x g ( x ) = 1 cos x sin x tan x \begin{aligned} \large f(x)&=\large\frac{1-\cos x}{\sin x} \\\large g(x)&=\large\frac{1-\cos x}{\sin x\tan x} \end{aligned} Suppose we have two functions of f ( x ) f(x) and g ( x ) g(x) as above. Which of the following statements is correct?


Here is the physics problem.

f ( π 3 ) < f ( π 4 ) f(\frac\pi 3)<f(\frac\pi 4) and g ( π 3 ) > g ( π 4 ) g(\frac\pi 3)>g(\frac\pi 4) f ( π 3 ) > f ( π 4 ) f(\frac\pi 3)>f(\frac\pi 4) and g ( π 3 ) > g ( π 4 ) g(\frac\pi 3)>g(\frac\pi 4) f ( π 3 ) > f ( π 4 ) f(\frac\pi 3)>f(\frac\pi 4) and g ( π 3 ) < g ( π 4 ) g(\frac\pi 3)<g(\frac\pi 4) f ( π 3 ) < f ( π 4 ) f(\frac\pi 3)<f(\frac\pi 4) and g ( π 3 ) < g ( π 4 ) g(\frac\pi 3)<g(\frac\pi 4)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 28, 2018

Using half-angle tangent substitution and let t = tan x 2 t = \tan \dfrac x2 , we have sin x = 2 t 1 + t 2 \sin x = \dfrac {2t}{1+t^2} , cos x = 1 t 2 1 + t 2 \cos x = \dfrac {1-t^2}{1+t^2} , and tan x = 2 t 1 t 2 \tan x = \dfrac {2t}{1-t^2} .

Then f ( x ) = 1 cos x sin x = 1 1 t 2 1 + t 2 2 t 1 + t 2 = t = tan x 2 f(x) = \dfrac {1-\cos x}{\sin x} = \dfrac {1-\frac {1-t^2}{1+t^2}}{\frac {2t}{1+t^2}} = t = \tan \dfrac x2 . For 0 x π 2 0\le x \le \frac \pi 2 , tan x 2 \tan \dfrac x2 is an increasing function. Therefore, f ( π 3 ) > f ( π 4 ) f \left(\frac \pi 3\right) > f \left(\frac \pi 4\right) .

And g ( x ) = 1 cos x sin x tan x = f ( x ) tan x = t 2 t 1 t 2 = 1 t 2 2 = 1 ( f ( x ) ) 2 2 g(x) = \dfrac {\color{#3D99F6}1-\cos x}{{\color{#3D99F6}\sin x}\tan x} = \dfrac {\color{#3D99F6}f(x)}{\tan x} = \dfrac t{\frac {2t}{1-t^2}} = \dfrac {1-t^2}2 = \dfrac {1-(f(x))^2}2 g ( π 3 ) < g ( π 4 ) \implies g \left(\frac \pi 3\right) < g \left(\frac \pi 4\right) .

Therefore, the answer f ( π 3 ) > f ( π 4 ) and g ( π 3 ) < g ( π 4 ) \boxed{f \left(\frac \pi 3\right) > f \left(\frac \pi 4\right) \text{ and } g \left(\frac \pi 3\right) < g \left(\frac \pi 4\right)} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...