Inspired by Aakash Khandelwal

Geometry Level 5

If a 0 = sin 2 ( π 45 ) a_0=\sin^2\left (\dfrac{\pi}{45} \right) and a n + 1 = 4 a n ( 1 a n ) a_{n+1}=4a_{n}(1-a_{n}) for n 0 n\geq 0 , find the smallest positive integer n n such that a n = a 0 a_n=a_0 .

If you come to the conclusion that no such n n exists, enter 666.


Inspiration .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 29, 2016

We can claim that a n = sin 2 ( 2 n π 45 ) a_n = \sin^2 \left(\dfrac{2^n \pi}{45} \right) and prove it by induction.

  1. For n = 0 n=0 , a n = sin 2 ( 2 0 π 45 ) = sin 2 ( π 45 ) a_n = \sin^2 \left(\dfrac{2^0 \pi}{45} \right) = \sin^2 \left(\dfrac{\pi}{45} \right) as given. The claim is true for n = 0 n=0 .
  2. Assuming the claim is true for n n , then

a n + 1 = 4 a n ( 1 a n ) = 4 sin 2 ( 2 n π 45 ) ( 1 sin 2 ( 2 n π 45 ) ) = 4 sin 2 ( 2 n π 45 ) cos 2 ( 2 n π 45 ) = sin 2 ( 2 n + 1 π 45 ) \begin{aligned} \quad \quad a_{n+1} & = 4a_n (1-a_n) \\ & = 4\sin^2 \left(\frac{2^n \pi}{45} \right) \left(1-\sin^2 \left(\dfrac{2^n \pi}{45} \right) \right) \\ & = 4\sin^2 \left(\frac{2^n \pi}{45} \right) \cos^2 \left(\dfrac{2^n \pi}{45} \right) \\ & = \sin^2 \left(\dfrac{2^{n+1} \pi}{45} \right)\end{aligned}

\quad \space \space The claim is also true for n + 1 n+1 . Therefore, the claim is true for all n n .

For a n = a 0 a_n = a_0 ,

sin 2 ( 2 n π 45 ) = sin 2 ( π 45 ) = sin 2 ( k π ± π 45 ) where k is a positive integer. 2 n 45 k ± 1 2 n = ± 1 ( m o d 45 ) \begin{aligned} \Rightarrow \sin^2 \left(\frac{2^n \pi}{45} \right) & = \sin^2 \left(\frac{\pi}{45} \right) \\ & = \sin^2 \left(k \pi \pm \frac{\pi}{45} \right) \quad \quad \small \color{#3D99F6}{\text{where } k \text{ is a positive integer.}} \\ \Rightarrow 2^n & \equiv 45 k \pm 1 \\ \Rightarrow 2^n & = \pm 1 \pmod{45} \end{aligned}

The smallest n n is found to be 12 \boxed{12} , as 2 12 1 ( m o d 45 ) 2^{12} \equiv 1 \pmod{45} .

Smart, but again s a m e same solution!!

Aakash Khandelwal - 5 years, 2 months ago

Try @https://brilliant.org/problems/tedious-i/

Aakash Khandelwal - 5 years, 2 months ago

Yes, exactly, Comrade! Wonderfully explained, as usual. (+1)

Otto Bretscher - 5 years, 2 months ago

I know I'm weak in number theory. Still, how did you approach the last step?

Saurabh Chaturvedi - 5 years, 2 months ago

Log in to reply

I tried to show a simple approach but I could not. I used an Excel spreadsheet to calculate the modulo (remainders). Actually, not that tough. For n = 1 n=1 to 5 5 , 2 n 2 n ( m o d 45 ) ± 1 2^n \equiv 2^n \pmod{45} \ne \pm 1 , 2 6 64 19 ( m o d 45 ) 2^6 \equiv 64 \equiv 19 \pmod{45} , 2 7 128 7 ( m o d 45 ) 2^7 \equiv 128 \equiv -7 \pmod{45} , 2 8 256 31 ( m o d 45 ) 2^8 \equiv 256 \equiv 31 \pmod{45} ...

Chew-Seong Cheong - 5 years, 2 months ago

Same solution!

Brandon Monsen - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...