Inspired by Aditya Kumar

Algebra Level 4

Find the maximal value of x 4 + y 4 + z 4 x^4+y^4+z^4 when x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 , where x , y , z x,y,z are real numbers.


Inspiration .


The answer is 1.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Oct 22, 2015

x 4 + y 4 + z 4 = ( x 2 + y 2 + z 2 ) 2 2 ( x 2 y 2 + y 2 z 2 + z 2 x 2 ) Since x 2 + y 2 + z 2 = 1 = 1 2 ( x 2 y 2 + y 2 z 2 + z 2 x 2 ) Note that x 2 y 2 + y 2 z 2 + z 2 x 2 0 x 4 + y 4 + z 4 1 \begin{aligned} x^4+y^4+z^4 & = (\color{#3D99F6}{x^2+y^2+z^2})^2 -2(x^2y^2+y^2z^2 + z^2 x^2) \quad \quad \small \color{#3D99F6}{\text{Since } x^2+y^2+z^2 =1} \\ & = 1 - 2(\color{#3D99F6}{x^2y^2+y^2z^2 + z^2 x^2}) \quad \quad \quad \quad \quad \quad \quad \quad \small \color{#3D99F6}{\text{Note that }x^2y^2+y^2z^2 + z^2 x^2 \ge 0 } \\ \Rightarrow x^4+y^4+z^4 & \le \boxed{1} \end{aligned}

Maximum value of x 4 + y 4 + z 4 x^4+y^4+z^4 is 1 1 if and when x 2 y 2 + y 2 z 2 + z 2 x 2 = 0 x^2y^2+y^2z^2 + z^2 x^2 = 0 . We note that when x = y = 0 x=y=0 and z = 1 z = 1 , then x 2 + y 2 + z 2 = 1 x^2+y^2+z^2 =1 and x 2 y 2 + y 2 z 2 + z 2 x 2 = 0 x^2y^2+y^2z^2 + z^2 x^2 = 0 .

Clear, systematic solution (+1)... thank you!

Otto Bretscher - 5 years, 7 months ago

Log in to reply

Bitte schön.

Chew-Seong Cheong - 5 years, 7 months ago
Otto Bretscher
Oct 22, 2015

We have x 2 1 x^2\leq 1 so x 4 x 2 x^4\leq x^2 . Likewise, y 4 y 2 y^4\leq y^2 and z 4 z 2 z^4\leq z^2 so x 4 + y 4 + z 4 x 2 + y 2 + z 2 = 1 x^4+y^4+z^4\leq x^2+y^2+z^2=\boxed{1} . The maximum is attained when x = 1 x=1 and y = z = 0 y=z=0 , for example.

Moderator note:

Nice observation with x 4 x 2 x^4 \leq x^2 .

To generalize this approach to x 2 + y 2 + z 2 = k x^2 + y^2 + z^2 = k , we can use the substitution x = x k x^* = \frac{x}{ \sqrt{k} } .

Aditya Kumar
Oct 20, 2015

This might not be a proper approach. But it helps me many times.

l e t f : x 4 + y 4 + z 4 F o r m a x v a l u e , ( x 2 + y 2 + z 2 = 1 ) f x = 0 x = 0 S i m i l a r l y y = z = 0. B u t t h i s i s m i n i m a . U s i n g t h e b i n d i n g p r o v i d e d , a n y 2 v a r i a b l e s , s a y x = y = 0 a n d z = 1. m a x { x 4 + y 4 + z 4 } = 1 let\quad f:\quad { x }^{ 4 }+y^{ 4 }+{ z }^{ 4 }\quad \\ For\quad max\quad value,\quad \quad \quad \quad \quad ({ x }^{ 2 }+y^{ 2 }+{ z }^{ 2 }=1)\\ \frac { \partial f }{ \partial x } =0\\ \Rightarrow x=0\\ Similarly\quad y=z=0.\\ But\quad this\quad is\quad minima.\quad Using\quad the\quad binding\quad provided,\\ any\quad 2\quad variables,\quad say\quad x=y=0\quad and\quad z=1.\\ \therefore \quad max\left\{ { x }^{ 4 }+y^{ 4 }+{ z }^{ 4 } \right\} =1

Please correct me

When you have constraints, you cannot simply set the partial derivatives equal to zero to find the extrema... see our discussion of Lagrange multipliers elsewhere. For example, how would you find the MINIMUM of x 4 + y 4 + z 4 x^4+y^4+z^4 when x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 ?

Otto Bretscher - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...