Inspired by all

Calculus Level 4

y = ( x s i n x ) + ( x s i n x ) + \large {y=\sqrt{(x-sinx)+\sqrt{(x-sinx)+\ldots }}}

If y y satisfy the equation above, then find

d x d y a t x = π 2 2 4 lim n [ 1 n 2 1 + 1 n 2 2 2 + . . . . + 1 n 2 ( n 1 ) 2 ] {\left| |\frac{dx}{dy}|^{2}_{at~x=\frac{\pi}{2}}-4\displaystyle \lim_{n\to \infty}[\frac{1}{\sqrt{n^{2}-1}}+\frac{1}{\sqrt{n^{2}-2^{2}}}+....+\frac{1}{\sqrt{n^{2}-(n-1)^{2}}}] \right|}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nishant Rai
May 7, 2015

Simpler one!

y = ( x s i n x ) + ( x s i n x ) + . . . . y=\sqrt{(x-sinx)+\sqrt{(x-sinx)+....\infty}}

y 2 y = x sin x . . . . . . . . . ( i ) \rightarrow y^2 - y = x - \sin x .........(i)

d x d y a t x = π 2 2 = ( 2 y 1 ) 2 |\frac{dx}{dy}|^{2}_{at~x=\frac{\pi}{2}} = (2y-1)^2

On solving euqation ( i ) (i) at x = π 2 x = \frac{\pi}{2} , we get the value of y y

Now for the Limit part, 4 lim n [ 1 n 2 1 + 1 n 2 2 2 + . . . . + 1 n 2 ( n 1 ) 2 ] = 2 π 4\displaystyle \lim_{n\to \infty} [\frac{1}{\sqrt{n^{2}-1}}+\frac{1}{\sqrt{n^{2}-2^{2}}}+....+\frac{1}{\sqrt{n^{2}-(n-1)^{2}}}]= 2\pi \rightarrow by using Summation of series using Definite Integral.

Put the values, and get the answer :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...