Inspired by Andrew Ellinor

Geometry Level 4

P = 0 π / 2 T ( ϕ ) d ϕ \Large \mathfrak P=\displaystyle\int_0^{\pi/2}\mathfrak{T}(\phi)\mathrm{d}\phi

Given T ( ϕ ) = n = 0 cos 3 ϕ csc 4 n ϕ , ( csc ϕ 1 ) \large \mathfrak{T}(\phi)=\displaystyle\sum_{n=0}^{\infty}\dfrac{\cos^3\phi}{\csc^{4n} \phi},~(|\csc \phi|\neq 1) , if the value of P \mathfrak P can be written in the form π ψ ψ \large\dfrac{\pi}{\psi^{\psi}} ( ψ Z + ) ~~(\psi\in\mathbb{Z}^+) , then: ψ ψ ψ + 1 = ? \Large\color{#D61F06}{\psi^{\psi^{\psi+1}}}=\ ?


Inspiration

None of the other options 16 256 This question is flawed 2 5 × 2 2 2^5\times 2^2 64

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
May 5, 2016

n = 0 sin 4 n ϕ \displaystyle\sum_{n=0}^{\infty}\sin^{4n}\phi represent a sum of Infinite GP ( sin 4 ϕ < 1 ) ~~(\because \sin^4 \phi<1) which is given by: 1 1 sin 4 ϕ = 1 ( 1 sin 2 ϕ ) cos 2 ϕ ( 1 + sin 2 ϕ ) \dfrac{1}{1-\sin^4\phi}=\dfrac{1}{\underbrace{(1-\sin^2\phi)}_{\cos^2\phi}(1+\sin^2\phi)} Hence, T ( ϕ ) = cos ϕ 1 + sin 2 ϕ \Large\mathfrak{T}(\phi)=\dfrac{\cos \phi}{1+\sin^2\phi} P = 0 π / 2 cos ϕ d ϕ d ( sin ϕ ) 1 + sin 2 ϕ = tan 1 ( sin ϕ ) 0 π / 2 = π 4 = π 2 2 \begin{aligned}\therefore \mathfrak{P}=\displaystyle\int_0^{\pi/2}\dfrac{\overbrace{\cos \phi~\mathrm{d}\phi}^{\mathrm{d}(\sin \phi)}}{1+\sin^2\phi}&=\left|\tan^{-1}(\sin \phi)\right|_0^{\pi/2}\\&=\large \dfrac{\pi}{4}=\dfrac{\pi}{2^2}\end{aligned}

2 2 3 = 2 8 = 256 \Large \therefore 2^{2^3}=2^8=\huge\boxed{256}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...