Counting on Top, Factorials on Bottom

Algebra Level 3

1 2 ! + 2 3 ! + 3 4 ! + + 2015 2016 ! \dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+\cdots+\dfrac{2015}{2016!}

If the value of above expression is in the form 1 1 a 1-\dfrac{1}{a} , find a a .

2 2 2016 ! 2016! 2016 2016 2014 2014 2 ! 2! 2014 ! 2014! 2017 ! 2017! 2017 2017

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Udaiwal
Dec 29, 2015

This is a Telescoping Series .

k ( k + 1 ) ! = ( k + 1 ) 1 ( k + 1 ) ! = 1 k ! 1 ( k + 1 ) ! 1 2 ! + 2 3 ! + 3 4 ! + + 2015 2016 ! = 1 1 ! 1 2 ! + 1 2 ! 1 3 ! + 1 3 ! + + 1 2015 ! 1 2016 ! = 1 1 2016 ! . \dfrac{k}{(k+1)!}=\dfrac{(k+1)-1}{(k+1)!}=\dfrac{1}{k!}-\dfrac{1}{(k+1)!} \\ \implies \dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+\ldots+\dfrac{2015}{2016!} \\ =\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+\dfrac{1}{3!}+\ldots+\dfrac{1}{2015!}-\dfrac{1}{2016!} \\ =1-\dfrac{1}{2016!}.

You could also use the fact that since the terms are in the form of n 1 n ! \frac{n-1}{n!} , we can rewrite it as 1 ( n 1 ) ! 1 n ! \frac{1}{(n-1)!}-\frac{1}{n!}

William Isoroku - 5 years, 5 months ago

Log in to reply

Yes I could,thanks for the idea!

Rohit Udaiwal - 5 years, 5 months ago
Chew-Seong Cheong
Dec 30, 2015

Perhaps this is a better presentation:

Let the sum be S S , then we have:

S = n = 1 2015 n ( n + 1 ) ! = n = 1 2015 ( 1 n ! 1 ( n + 1 ) ! ) = n = 1 2015 1 n ! n = 2 2016 1 n ! = 1 1 ! 1 2016 ! a = 2016 ! \begin{aligned} S & = \sum_{n=1}^{2015} \frac{n}{(n+1)!} \\ & = \sum_{n=1}^{2015} \left( \frac{1}{n!} - \frac{1}{(n+1)!} \right) \\ & = \sum_{n=1}^{2015} \frac{1}{n!} - \sum_{n=2}^{2016} \frac{1}{n!} \\ & = \frac{1}{1!} - \frac{1}{2016!} \\ \Rightarrow a & = \boxed{2016!} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...