Inspired by Ayush Rai

What are the last two digits of

9 5 1999 + 9 6 1999 ? \large 95^{1999} + 96^{1999}?


Inspiration .


The answer is 31.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Abhishek Sinha
Jul 16, 2016

Note that, 9 5 2 = 25 m o d ( 100 ) 95^2=25 \mod(100) and 2 5 2 = 25 m o d ( 100 ) 25^2= 25 \mod (100) . Thus, 9 5 1999 = 95 × ( 9 5 2 × 9 5 2 × × 9 5 2 ) m o d ( 100 ) = 95 × 25 = 75 m o d ( 100 ) 95^{1999} = 95 \times \big( 95^2 \times 95^2 \times \ldots \times 95^2\big) \mod(100)= 95\times 25 = 75 \mod(100) Again, 9 6 5 = 76 m o d ( 100 ) 96^5 = 76 \mod(100) and 7 6 2 = 76 m o d ( 100 ) 76^2= 76 \mod (100) . Thus, 9 6 1999 = 9 6 4 × ( 9 6 5 × 9 6 5 × × 9 6 5 ) m o d ( 100 ) = 56 × 76 m o d ( 100 ) = 56 m o d ( 100 ) 96^{1999}= 96^4 \times \big( 96^5 \times 96^5 \times \ldots \times 96^5 \big) \mod (100)= 56\times 76 \mod(100)= 56 \mod(100) Thus the answer is 75 + 56 m o d ( 100 ) = 31 75+56 \mod(100)= 31 . \blacksquare

1.- 9 5 1999 ( 5 ) 1999 ( m o d 100 ) 95^{1999} \equiv (-5)^{1999} \pmod{100} Now, it can be proved by induction that n 2 , 5 n \forall n\ge 2, \space 5^n ends in 25 25 . So

9 5 1999 ( 5 ) 1999 25 75 ( m o d 100 ) 95^{1999} \equiv (-5)^{1999} \equiv -25 \equiv 75 \pmod{100}


2.- 96 0 ( m o d 4 ) 9 6 1999 0 ( m o d 4 ) 96 \equiv 0 \pmod{4} \Rightarrow 96^{1999} \equiv 0 \pmod 4 . I'm going now to use Euler theorem . ( ϕ ( 25 ) = 20 \phi (25) = 20 ) and due to 21 21 and 25 25 are coprime 2 1 20 1 ( m o d 25 ) 21^{20} \equiv 1 \pmod{25} \Rightarrow 9 6 1999 2 1 1999 = ( 2 1 20 ) 99 2 1 19 2 1 19 4 19 = ( 4 5 ) 3 4 4 6 ( m o d 25 ) 96^{1999} \equiv 21^{1999} = (21^{20})^{99} \cdot 21^{19} \equiv 21^{19} \equiv - 4^{19} = - (4^5)^3\cdot 4^4 \equiv 6 \pmod{25} ( 4 5 1 ( m o d 25 ) 4^5 \equiv -1 \pmod{25} ). In this point, we can use Chinese Remainder theorem 9 6 1999 4 19 6 + 0 25 1 = 456 56 ( m o d 100 ) \Rightarrow 96^{1999} \equiv 4\cdot 19 \cdot 6 + 0 \cdot 25 \cdot 1 = 456 \equiv 56 \pmod{100} . Therefore, 9 5 1999 + 9 6 1999 75 + 56 31 ( m o d 100 ) 95^{1999} + 96^{1999} \equiv 75 + 56 \equiv 31 \pmod{100}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...