Inspired By Brian Charlesworth!

Let S S be the set of all distinct Pythagorean Triplets ( a , b , c ) (a,b,c) where a , b , c a,b,c are positive integers and a < b < c a<b<c such that a b = 10 ( a + b + c ) ab=10(a+b+c) .

Let the sum of all distinct values of c c of the elements of S S be x x .

Let the number of elements or Pythagorean Triplets present in the set S S be y y .

Let the sum of all distinct Inradii of all such Right Angled Triangles formed by the Pythagorean Triplets present in S S be z z .

Find the value of x + y + z x+y+z .


The answer is 601.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Surya Prakash
Aug 8, 2015

a 2 + b 2 = c 2 a^{2} + b^{2} = c^{2} ( a + b ) 2 c 2 = 2 a b (a+b)^{2} -c^{2} = 2ab ( a + b + c ) ( a + b c ) = 20 ( a + b + c ) (a+b+c)(a+b-c) = 20(a+b+c) a + b c = 20 a+b-c = 20 10 ( a + b + c ) + 10 ( a + b c ) = a b + 200 10(a+b+c) + 10(a+b-c) = ab +200 ( a 20 ) ( b 20 ) = 200 (a-20)(b-20)=200

Solving the above diophantinus equation and substituting the values of a a and b b in a 2 + b 2 = c 2 a^{2} + b^{2} = c^{2} . We get,

S = { ( 21 , 220 , 221 ) , ( 22 , 120 , 122 ) , ( 24 , 70 , 74 ) , ( 25 , 60 , 65 ) , ( 28 , 45 , 53 ) , ( 30 , 40 , 50 ) } \small S = \left\{ (21,220,221),(22,120,122),(24,70,74),(25,60,65),(28,45,53),(30,40,50)\right\}

So, x = 221 + 122 + 74 + 65 + 53 + 50 = 585 x = 221+122+74+65+53+50 =\boxed{585} , y = 6 y=\boxed{6} .

Now, inradius, r = Δ s = 1 2 a b 1 2 ( a + b + c ) = a b a + b + c = 10 r = \dfrac{\Delta}{s} = \dfrac{\dfrac{1}{2}ab}{\dfrac{1}{2}(a+b+c)} = \dfrac{ab}{a+b+c} = 10 . So, it is constant for all the triangles formed by these Pythagorean triplets. So, z = 10 z=\boxed{10} .

So, x + y + z = 601 x+y+z=\boxed{601} .

Moderator note:

That's a very clean way of getting to the diophantine equation! What made you think of it?

Samarpit Swain
Apr 29, 2015

For a right-angled triangle with sides a , b , c a,b,c where a < b < c a<b<c , By Pythagoras theorem we have hypotenuse c = a 2 + b 2 c=\sqrt{ a^2+b^2} . So our equation becomes a b = 10 ( a + b + a 2 + b 2 ) ab = 10\left(a + b + \sqrt{a^2 + b^2} \right) a b 10 a 10 b = 10 a 2 + b 2 ab -10a - 10b = 10\sqrt{a^2 + b^2} . Now, squaring both the sides, we get: a 2 b 2 + 100 ( a 2 + b 2 ) 20 a b ( a + b ) + 200 a b = 100 ( a 2 + b 2 ) a^{2}b^{2}+ 100(a^{2}+b^{2})-20ab(a+b)+200ab=100(a^{2}+b^{2}) => a b ( a b 20 a 20 b + 200 ) = 0 ab(ab - 20a - 20b + 200) = 0 . Since a b 0 ab\neq 0 , ( a b 20 a 20 b + 200 ) = 0 (ab - 20a - 20b + 200) = 0 . Factorizing and rearranging the given equation, we get: a ( b 20 ) 20 ( b 10 ) = 0 a(b-20)-20(b-10)=0 => a 20 = b 10 b 20 = > a = 20 + 200 b 20 \dfrac{a}{20}=\dfrac{b-10}{b-20}=> a= 20+\dfrac{200}{b-20} We can easily solve this Diophantine equation, starting with the factorization of 200 200 , followed by setting values for b b , then finding a a and finally c c , under the following constraints: 0 < a < b < c 0<a<b<c and ( a , b , c ) Z + (a,b,c)\in Z^{+} . So we arrive at 6 possible solutions of ( a , b , c ) (a,b,c) : ( 30 , 40 , 50 ) , ( 28 , 45 , 53 ) , ( 25 , 60 , 65 ) , ( 24 , 70 , 74 ) , ( 22 , 120 , 122 ) , ( 21 , 220 , 221 ) (30,40,50), (28,45,53), (25,60,65),(24,70,74),(22,120,122),(21,220,221)

Therefore, x = c Δ = 585 , y = 6 x = \sum{c_{\Delta}}=585 , y=6 . For finding the in-radius, we can apply the formula, r = a + b c 2 r=\dfrac{a+b-c}{2} (This can be derived easily through the properties of tangents to circles). By replacing values from the solution-set we get the in-radii of all triangles as 10 10 . z = 10 \therefore z=10 . Hence, x + y + z = 585 + 6 + 10 = 601 : ) x+y+z= 585+6+10=601 :)

Corollary: \text{Corollary:} Given the equation a b = 10 ( a + b + c ) ab= 10(a+b+c)

= > 10 = a b a + b + c = > ( a + b ) 2 2 ( a 2 + b 2 ) 2 a + b + c => 10= \dfrac{ab}{a+b+c} => \dfrac{\dfrac{(a+b)^{2}}{2}-\dfrac{(a^{2}+b^{2})}{2}}{a+b+c}

= > 10 = ( a + b ) 2 c 2 2 ( a + b + c ) = > 10 = ( a + b + c ) ( a + b c ) 2 ( a + b + c ) => 10 = \dfrac{(a+b)^{2}-c^{2}}{2(a+b+c)}=> 10= \dfrac{(a+b+c)(a+b-c)}{2(a+b+c)}

10 = a + b c 2 = r \therefore 10 = \dfrac{a+b-c}{2}=r

Hence for any triplet of ( a , b , c ) (a,b,c) satisfying the above equation, the inradius of all possible triangles formed will always be equal to 10 10

While solving this question , I came across an interesting fact:

\bullet If you look closely at the set of solutions, we see for ( a , b , c ) (a,b,c) ,except ( 30 , 40 , 50 ) (30,40,50) that. b + ( unit’s digit of a ) = c b+(\text{unit's digit of a})=c

Can somebody explain this to me , please? @Brian Charlesworth @Kazem Sepehrinia @Kartik Sharma @Sharky Kesa @Calvin Lin

Samarpit Swain - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...