Inspired by Calvin Lin

Calculus Level 3

( 1 4 2 + 1 8 2 + 1 1 2 2 + ) + ( 1 4 4 + 1 8 4 + 1 1 2 4 + ) + ( 1 4 6 + 1 8 6 + 1 1 2 6 + ) + \begin{aligned} &&\left(\frac{1}{4^2}+\frac{1}{8^2}+\frac{1}{12^2}+\ldots\right) \\& + &\left(\frac{1}{4^4}+\frac{1}{8^4}+\frac{1}{12^4}+\ldots\right) \\ & + & \left(\frac{1}{4^6}+\frac{1}{8^6}+\frac{1}{12^6}+\ldots\right) \\ & + & \ldots \end{aligned}

What is the sum of this series?

Note that the bases are divisible by 4, and the exponents are even.

4 π 8 \frac{4-\pi}{8} 1 9 \frac{1}{9} 1 3 11 \frac{1}{3\sqrt{11}} 3 e 2 \frac{3-e}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jayanta Mandi
May 4, 2015

( 1 4 2 + 1 8 2 + 1 1 2 2 + . . . ) + ( 1 4 4 + 1 8 4 + 1 1 2 4 + . . . ) + . . . ( \frac{1}{ 4^{2} } + \frac{1}{ 8^{2} }+\frac{1}{ 12^{2} }+...)+ ( \frac{1}{ 4^{4} } + \frac{1}{ 8^{4} }+\frac{1}{ 12^{4} }+...)+...

= 1 4 2 ( 1 + 1 4 2 + 1 4 4 + . . . ) + 1 8 2 ( 1 + 1 8 2 + 1 8 4 + . . . ) + . . . = \frac{1}{ 4^{2} } (1+ \frac{1}{ 4^{2} } + \frac{1}{ 4^{4} }+...)+\frac{1}{ 8^{2} } (1+ \frac{1}{ 8^{2} } + \frac{1}{ 8^{4} }+...)+...

= 1 4 2 1 + 1 8 2 1 + . . . = \frac{1}{ 4^{2} -1} +\frac{1}{ 8^{2} -1}+...

= 1 2 ( 1 3 1 5 + 1 7 1 9 + . . . ) = \frac{1}{2} ( \frac{1}{3}- \frac{1}{5}+ \frac{1}{7}- \frac{1}{9}+...)

= 1 2 ( 1 tan 1 1 ) = \frac{1}{2} (1- \tan^{-1} 1 )

= 1 2 ( 1 π 4 ) = \frac{1}{2} (1- \frac{ \pi }{4} )

Moderator note:

Fantastic use of the identity π 4 = 1 1 3 + 1 5 1 7 + \frac \pi 4 = 1 - \frac13 +\frac15-\frac17 +\ldots

Can you convert this sum of series as a single summation in terms of Riemann zeta function?

clear and elegant solution!

Otto Bretscher - 6 years, 1 month ago

Log in to reply

Thank you.

Jayanta Mandi - 6 years, 1 month ago

[Response to Challenge Master Note]

We use the definition of Riemann zeta function, which is,

ζ ( i ) = j = 1 1 j i ζ ( 2 i ) = j = 1 1 j 2 i \zeta(i)=\sum_{j=1}^\infty\frac{1}{j^i}\implies \zeta(2i)=\sum_{j=1}^\infty\frac{1}{j^{2i}}

The sum (call it S S ) can be written (exactly as it is presented in the problem) compactly using summation notation:

S = i = 1 j = 1 1 ( 4 j ) 2 i = i = 1 ( 1 1 6 i ( j = 1 1 ( j ) 2 i ) ) = i = 1 ζ ( 2 i ) 1 6 i S=\sum_{\color{#D61F06}{i=1}}^\infty\sum_{\color{magenta}{j=1}}^\infty\frac{1}{(4j)^{2i}}=\sum_{\color{#D61F06}{i=1}}^\infty\left(\frac{1}{16^i}\left(\sum_{\color{magenta}{j=1}}^\infty\frac{1}{(j)^{2i}}\right)\right)=\sum_{i=1}^\infty\frac{\zeta(2i)}{16^i}

Prasun Biswas - 6 years, 1 month ago

dide the same, i liked this problem :)

Héctor Andrés Parra Vega - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...