Inspired by Calvin Lin - Part II

Algebra Level 5

f ( n ) = x 2 + ( x 1 ) 2 + ( x + 2 ) 2 + + ( x 2 n + 1 ) 2 + ( x + 2 n ) 2 f(n)=x^2 + ( x -1) ^2 +(x+2)^2+\ldots+(x-2n+1)^2+(x+2n)^2

As x x ranges over all real values, If the minimum value of f ( n ) f(n) is 3936170 59 \dfrac{3936170}{59} for some natural number n n , find the value of n n .


The answer is 29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush Verma
Jun 30, 2015

T r + 1 = { x + ( 1 ) r r } 2 = x 2 + r 2 + 2 x ( 1 ) r r f ( n ) = r = 0 r = 2 n [ x 2 + r 2 + 2 x ( 1 ) r r ] = ( 2 n + 1 ) x 2 + ( 2 n ) ( 2 n + 1 ) ( 4 n + 1 ) 6 + 2 x n f ( n ) w i l l b e m i n f o r x = n 2 n + 1 f ( n ) m i n = n ( 2 n + 1 ) ( 4 n + 1 ) 3 n 2 2 n + 1 = 3936170 59 o r , n = 29 { T }_{ r+1 }={ \left\{ x+{ \left( -1 \right) }^{ r }r \right\} }^{ 2 }={ x }^{ 2 }+{ r }^{ 2 }+2x{ \left( -1 \right) }^{ r }r\\ \\ f\left( n \right) =\sum _{ r=0 }^{ r=2n }{ \left[ { x }^{ 2 }+{ r }^{ 2 }+2x{ \left( -1 \right) }^{ r }r \right] } \\ \\ =\left( 2n+1 \right) { x }^{ 2 }+\cfrac { \left( 2n \right) \left( 2n+1 \right) \left( 4n+1 \right) }{ 6 } +2xn\\ \\ f\left( n \right) \quad will\quad be\quad min\quad for\quad x=\cfrac { -n }{ 2n+1 } \\ \\ { f\left( n \right) }_{ min }=\cfrac { n\left( 2n+1 \right) \left( 4n+1 \right) }{ 3 } -\cfrac { { n }^{ 2 } }{ 2n+1 } =\cfrac { 3936170 }{ 59 } \\ \\ or,\quad n=29

Note- How did I solve the eqn? When u simplify ,u will notice that f(n) is increasing for n>0 ,so putting 10,20,30... u will find range in which root is then put 25...27...29....yes hit & trial with a scientific calculator or use standard method for quadratic equation

After you got the expression of min of f ( n ) f(n) , how did you proceed to get n = 29 n=29 ?

Skanda Prasad - 3 years, 1 month ago

Log in to reply

i have answered ur qn in 'note'

Ayush Verma - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...