Inspired By Christian Lim

Algebra Level 5

Let x x and y y be real numbers that satisfy the equation ( 1 + 2 x ) ( 1 2 x ) = y ( 5 y + 8 x ) (1+2x)(1-2x)=y(5y+8x) .

Over all such pairs ( x , y ) (x,y) , let the maximum and minimum values of the expression 2 x 2 + 2 y 2 + 3 x y 2x^2+2y^2+3xy be M M and N N respectively. If the expression M + N + M N = a b M+N+MN= \frac {a}{b} holds true for co-prime positive integers a a and b b , then what is the value of a + b ? a+b?

Inspiration


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Given that

( 1 + 2 x ) ( 1 2 x ) = y ( 5 y + 8 x ) 1 4 x 2 = 5 y 2 + 8 x y 4 x 2 + 8 x y + 5 y 2 = 1 4 x 2 + 8 x y + 4 y 2 + y 2 = 1 ( 2 ( x + y ) ) 2 + y 2 = 1 \begin{aligned} (1+2x)(1-2x) & = y(5y+8x) \\ 1-4x^2 & = 5y^2 + 8xy \\ 4x^2 +8xy + 5y^2 & = 1 \\ 4x^2 +8xy + 4y^2 + y^2 & = 1 \\ (2(x+y))^2 + y^2 & = 1 \end{aligned}

The given equation is an ellipse and we can substitute

{ 2 ( x + y ) = cos θ sin θ = sin θ x = 1 2 cos θ sin θ \begin{cases} 2(x+y) = \cos \theta \\ \sin \theta = \sin \theta \end{cases} \implies x = \frac 12 \cos \theta - \sin \theta

Now we have:

2 x 2 + 3 x y + 2 y 2 = 2 ( x + y ) 2 x y = 1 2 cos 2 θ ( 1 2 cos θ sin θ ) sin θ = 1 2 cos 2 θ + sin 2 θ 1 2 sin θ cos θ = 1 2 + 1 2 sin 2 θ 1 2 sin θ cos θ = 1 2 + 1 4 ( 1 cos 2 θ ) 1 4 sin 2 θ = 3 4 2 4 sin ( 2 θ + π 4 ) \begin{aligned} 2x^2 + 3xy + 2y^2 & = 2(x+y)^2 - xy \\ & = \frac 12 \cos^2 \theta - \left(\frac 12 \cos \theta - \sin \theta \right) \sin \theta \\ & = \frac 12 \cos^2 \theta + \sin^2 \theta - \frac 12 \sin \theta \cos \theta \\ & = \frac 12 + \frac 12 \sin^2 \theta - \frac 12 \sin \theta \cos \theta \\ & = \frac 12 + \frac 14 \left(1- \cos 2 \theta\right) - \frac 14 \sin 2 \theta \\ & = \frac 34 - \frac {\sqrt 2}4 \sin \left(2\theta + \frac \pi 4\right) \end{aligned}

Therefore,

{ M = max ( 3 4 2 4 sin ( 2 θ + π 4 ) ) = 3 + 2 4 when sin ( 2 θ + π 4 ) = 1 N = min ( 3 4 2 4 sin ( 2 θ + π 4 ) ) = 3 2 4 when sin ( 2 θ + π 4 ) = 1 \implies \begin{cases} M = \max \left(\frac 34 - \frac {\sqrt 2}4 \sin \left(2\theta + \frac \pi 4\right) \right) = \frac {3+\sqrt 2}4 & \text{when } \sin \left(2\theta + \frac \pi 4\right) = - 1 \\ N = \min \left(\frac 34 - \frac {\sqrt 2}4 \sin \left(2\theta + \frac \pi 4\right) \right) = \frac {3-\sqrt 2}4 & \text{when } \sin \left(2\theta + \frac \pi 4\right) = 1 \end{cases}

M + N + M N = 3 + 2 4 + 3 2 4 + 3 + 2 4 × 3 2 4 = 3 2 + 7 16 = 31 16 \implies M+N+MN = \frac {3+\sqrt 2}4 + \frac {3-\sqrt 2}4 + \frac {3+\sqrt 2}4 \times \frac {3-\sqrt 2}4 = \frac 32 + \frac 7{16} = \frac {31}{16} a + b = 31 + 16 = 47 \implies a+b = 31+16 = \boxed{47} .

Beautiful Solution. I particularly liked how you manipulated the trigonometric expression to be a simple sine function.

Harsh Poonia - 2 years, 3 months ago

Log in to reply

Glad that you like the solution. I have also provided a solution for Inspiration which I believe simpler than others.

Chew-Seong Cheong - 2 years, 3 months ago

Log in to reply

Sir, when you conveniently find time, please solve this beautiful problem . I have reported the answer to be incorrect, and shown my claim in the comments of the solution, but as of yet no one and not even the problem setter has seen to it . Would you please check?

Harsh Poonia - 2 years, 3 months ago

Beautiful solution

Arka Dutta - 2 years, 2 months ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...