Let and be real numbers that satisfy the equation .
Over all such pairs , let the maximum and minimum values of the expression be and respectively. If the expression holds true for co-prime positive integers and , then what is the value of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Given that
( 1 + 2 x ) ( 1 − 2 x ) 1 − 4 x 2 4 x 2 + 8 x y + 5 y 2 4 x 2 + 8 x y + 4 y 2 + y 2 ( 2 ( x + y ) ) 2 + y 2 = y ( 5 y + 8 x ) = 5 y 2 + 8 x y = 1 = 1 = 1
The given equation is an ellipse and we can substitute
{ 2 ( x + y ) = cos θ sin θ = sin θ ⟹ x = 2 1 cos θ − sin θ
Now we have:
2 x 2 + 3 x y + 2 y 2 = 2 ( x + y ) 2 − x y = 2 1 cos 2 θ − ( 2 1 cos θ − sin θ ) sin θ = 2 1 cos 2 θ + sin 2 θ − 2 1 sin θ cos θ = 2 1 + 2 1 sin 2 θ − 2 1 sin θ cos θ = 2 1 + 4 1 ( 1 − cos 2 θ ) − 4 1 sin 2 θ = 4 3 − 4 2 sin ( 2 θ + 4 π )
Therefore,
⟹ ⎩ ⎨ ⎧ M = max ( 4 3 − 4 2 sin ( 2 θ + 4 π ) ) = 4 3 + 2 N = min ( 4 3 − 4 2 sin ( 2 θ + 4 π ) ) = 4 3 − 2 when sin ( 2 θ + 4 π ) = − 1 when sin ( 2 θ + 4 π ) = 1
⟹ M + N + M N = 4 3 + 2 + 4 3 − 2 + 4 3 + 2 × 4 3 − 2 = 2 3 + 1 6 7 = 1 6 3 1 ⟹ a + b = 3 1 + 1 6 = 4 7 .