Inspired by 'Floor Ceiling Ceiling Floor : JEE Style'

Algebra Level 4

( x + 1 ) 2 + ( x 1 ) 2 = ( x 1 ) 2 + ( x + 1 ) 2 \large \displaystyle (\lceil x + 1 \rceil)^2 + (\lfloor x -1 \rfloor)^2 = (\lceil x -1 \rceil)^2 + (\lfloor x + 1 \rfloor)^2

The solution set of the equation above is?

Notations :

R \mathbb{R} denote the set of real numbers.

Z \mathbb{Z} denote the set of integers.

N \mathbb{N} denote the set of natural numbers.

Q \mathbb{Q} denote the set of rational numbers.

Inspiration .
Try my set
x N x \in \mathbb{N} x Z x \in \mathbb{Z} x R x \in \mathbb{R} x Q x \in \mathbb{Q}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 20, 2015

Let f ( x ) = x + 1 2 + x 1 2 x 1 2 x + 1 2 f(x) = \lceil x+1 \rceil ^2 + \lfloor x-1 \rfloor^2 - \lceil x-1 \rceil ^2 - \lfloor x+1 \rfloor^2

When x Z x + 1 = x + 1 x \in \mathbb {Z} \Longrightarrow \lceil x+1 \rceil = \lfloor x+1 \rfloor and x 1 = x 1 f ( x ) = 0 \lceil x-1 \rceil = \lfloor x-1 \rfloor \Longrightarrow f(x) = 0 .

When x R Z x \in \mathbb{R} \notin \mathbb{Z} ,

f ( x ) = x + 1 2 x + 1 2 x 1 2 + x 1 2 = ( x + 1 + 1 ) 2 x + 1 2 ( x 1 + 1 ) 2 + x 1 2 = 2 x + 1 + 1 2 x 1 1 = 2 x + 2 2 x + 2 = 4 \begin{aligned} \Rightarrow f(x) & = \lceil x+1 \rceil ^2 - \lfloor x+1 \rfloor^2 - \lceil x-1 \rceil ^2 + \lfloor x-1 \rfloor^2 \\ & = (\lfloor x+1 \rfloor +1)^2 - \lfloor x+1 \rfloor^2 - (\lfloor x-1 \rfloor +1)^2 + \lfloor x-1 \rfloor ^2 \\ & = 2\lfloor x+1 \rfloor +1 - 2\lfloor x-1 \rfloor - 1 \\ & = 2\lfloor x \rfloor + 2 - 2\lfloor x \rfloor + 2 \\ & = 4 \end{aligned}

f ( x ) = { 0 when x Z 4 when x R Z \Rightarrow f(x) = \begin{cases} 0 & \text{when } \boxed{x \in \mathbb{Z}} \\ 4 & \text{when } x \in \mathbb{R} \notin \mathbb{Z} \end{cases}

Moderator note:

Wonderful work!

Brilliant Sir... Just loved the way you did it👍

Avinash Singh - 6 years ago

A slightly easier way (but still equivalent to what you did) is to set x = n \lfloor x \rfloor = n for non-integers, and then compare ( n + 2 ) 2 + ( n 1 ) 2 n 2 ( n + 1 ) 2 (n+2)^2 + (n-1) ^2 - n^2 - (n+1) ^2 .

Calvin Lin Staff - 6 years ago

same method....!!!

Deepansh Jindal - 4 years, 11 months ago

Same there

Aakash Khandelwal - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...