Inspired by Harsh Shrivastava

Calculus Level 3

lim n n + 1 ( n ! ) 1 / n = ? \large\lim_{n \rightarrow \infty } \frac{ n+1} { \left( n! \right) ^ { 1/n} } = \, ?


Inspiration .

3 2 e e π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pi Han Goh
Jul 10, 2015

We apply a variation of Stolz–Cesàro theorem:

If the sequence ( x n / x n 1 ) n = 1 (x_n /x_{n-1} )_{n=1}^\infty has a limit, then lim n x n n = lim n x n x n 1 \displaystyle \lim_{n\to\infty} \sqrt[n]{x_n} = \lim_{n\to\infty} \frac{x_n}{x_{n-1}} .

Because n + 1 ( n ! ) 1 / n = ( n + 1 ) n n ! n \frac {n+1}{(n!)^{1/n}} = \sqrt[n]{ \frac{(n+1)^n}{n!}} , let x n = ( n + 1 ) n n ! x_n = \frac{(n+1)^n}{n!} , then lim n x n x n 1 = lim n ( 1 + 1 n ) n = e \displaystyle \lim_{n\to\infty}\frac{x_n}{x_{n-1}} = \lim_{n\to\infty}\left(1 + \frac1n\right)^n = e , which is finite.

Thus Stolz–Cesàro theorem is applicable. With the limit equals to e e .

Moderator note:

Great application of Stolz-Cesaro!

@Harsh Shrivastava It was your turn now. :)

Nihar Mahajan - 5 years, 11 months ago

Log in to reply

Huh.... 😛😛

Harsh Shrivastava - 5 years, 11 months ago
Aman Rajput
Jul 10, 2015

Split it like this:

lim n n ( n ! ) 1 / n + 1 ( n ! ) 1 / n \displaystyle \lim_{n \to \infty} \frac{n}{(n!)^{1/n}} + \frac{1}{(n!)^{1/n}}

Let y y = lim n ( n n n ! ) 1 / n + 0 \displaystyle \lim_{n \to \infty} (\frac{n^n}{n!})^{1/n} + 0

Taking log both the sides log y = lim n 1 n log ( n n 0 . n n 1 . n n 2 . . . . . . n n ( n 1 ) ) \displaystyle\log y = \lim_{n \to \infty} \frac{1}{n}\log(\frac{n}{n-0}. \frac{n}{n-1}. \frac{n}{n-2}......\frac{n}{n-(n-1)})

log y = lim n 1 n r = 0 n 1 log ( 1 1 r n ) \displaystyle \log y = \lim_{n \to \infty} \frac{1}{n} \sum_{r=0}^{n-1} \log(\frac{1}{1-\frac{r}{n}})

log y = 0 1 log ( 1 1 x ) d x \displaystyle \log y = \int\limits_0^1 \log(\frac{1}{1-x}) dx

log y = 1 \log y = 1 y = e y = \boxed{e}

We can use Stirling's approximation in the form

ln ( n ! ) = n ln ( n ) n + O ( ln ( n ) ) . \ln(n!) = n\ln(n) - n + O(\ln(n)).

With L L being the given limit, we then have that

ln ( L ) = lim n ( ln ( n + 1 ) 1 n ln ( n ! ) ) = \ln(L) = \lim_{n \rightarrow \infty} (\ln(n + 1) - \frac{1}{n}*\ln(n!)) =

lim n ( ln ( n + 1 ) ln ( n ) + 1 1 n O ( ln ( n ) ) ) = \lim_{n \rightarrow \infty} (\ln(n + 1) - \ln(n) + 1 - \frac{1}{n}*O(\ln(n))) =

1 + lim n ( ln ( 1 + 1 n ) ) lim n ( 1 n O ( ln ( n ) ) ) = 1 + ln ( 1 ) 0 = 1. 1 + \lim_{n \rightarrow \infty} (\ln(1 + \frac{1}{n})) - \lim_{n \rightarrow \infty} (\frac{1}{n}*O(\ln(n))) = 1 + \ln(1) - 0 = 1.

(Note that, by L'Hopital's rule,

lim x ln ( x ) x = lim x 1 x 1 = 0 , \lim_{x \rightarrow \infty} \frac{\ln(x)}{x} = \lim_{x \rightarrow \infty} \dfrac{\frac{1}{x}}{1} = 0,

the result then holding true for the analogous discrete limit.)

This implies that L L itself is e 1 = e . e^{1} = \boxed{e}.

Stirling's approximation really is powerful.

Jake Lai - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...