Inspired by MIT problem (I)

Calculus Level 3

f ( r ) = n = 2 2018 1 n r = 1 2 r + 1 3 r + + 1 201 8 r f(r)=\sum_{n=2}^{ 2018} \frac{1}{n^r}= \frac{1}{2^r}+\frac{1}{3^r}+\dots+\frac{1}{2018^r}

For f ( r ) f(r) as defined above, find k = 2 f ( k ) \displaystyle \sum_{k=2}^{\infty}f(k) .

2018 2019 \frac{2018}{2019} 2015 2016 \frac{2015}{2016} 2016 2017 \frac{2016}{2017} 2019 2020 \frac{2019}{2020} 2017 2018 \frac{2017}{2018}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = k = 2 n = 2 2018 1 n k = n = 2 2018 k = 2 1 n k = n = 2 2018 1 n 2 ( 1 1 1 n ) = n = 2 2018 1 n ( n 1 ) = n = 2 2018 ( 1 n 1 1 n ) = 1 1 1 2018 = 2017 2018 \begin{aligned} S & = \sum_{k=2}^\infty \sum_{n=2}^{2018} \frac 1{n^k} \\ & = \sum_{n=2}^{2018} \sum_{k=2}^\infty \frac 1{n^k} \\ & = \sum_{n=2}^{2018} \frac 1{n^2} \left(\frac 1{1-\frac 1n}\right) \\ & = \sum_{n=2}^{2018} \frac 1{n(n-1)} \\ & = \sum_{n=2}^{2018} \left(\frac 1{n-1} - \frac 1n\right) \\ & = \frac 11 - \frac 1{2018} \\ & = \boxed{\dfrac {2017}{2018}} \end{aligned}

Thank you Sir.

Hana Wehbi - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...