Inspired by Hung Woei Neoh

Geometry Level 4

x 3 24 x 2 + 180 x 420 = 0 x^3-24x^2+180x-420=0

A A B C \triangle ABC has side lengths a a , b b and c c , which are also the roots of the equation above. If a cos A + b cos B + c cos C = p q a\cos A+b\cos B+c\cos C=\dfrac{p}{q} , where p p and q q are coprime positive integers . Find p + q + 10 p+q+10 .


Inspiration ; Try this.


The answer is 141.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We know that ( Sine Rule ),

sin A a = sin B b = sin C c \implies \dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}

Let,

sin A a = sin B b = sin C c = k \dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}=k

{ a = k sin A b = k sin B c = k sin C \begin{cases} a=k \ \sin A \\ b=k \ \sin B \\ c=k \ \sin C\end{cases}

a cos A + b cos B + c cos C \implies a\cos A+b\cos B+c\cos C

= k sin A cos A + k sin B cos B + k s i n C cos C =k \ \sin A \ \cos A+k \ \sin B \ \cos B+k \ sin C \ \cos C

= k 2 ( sin 2 A + sin 2 B + sin 2 C ) =\dfrac{k}{2}\left(\color{#3D99F6}{\sin 2A+\sin 2B+\sin 2C}\right)

= k 2 ( 4 sin A sin B sin C ) =\dfrac{k}{2}\left(\color{#3D99F6}{4\sin A \ \sin B \ \sin C}\right)

= 2 a sin B sin C =2a \ \sin B \ \sin C

= 2 a × 2 Δ a c × 2 Δ a b [ Δ = 1 2 a b sin C = 1 2 c a sin B ] =2a×\dfrac{2\Delta}{ac}×\dfrac{2\Delta}{ab} \ \ \ \ \ \left[ \Delta=\frac{1}{2} ab \ \sin C=\dfrac{1}{2}ca \ \sin B\right]

= 8 Δ 2 a b c =\dfrac{8{\Delta}^{2}}{abc}

Now, using Herons's formula

Δ = s ( s a ) ( s b ) ( s c ) \implies \Delta=\sqrt{s(s-a)(s-b)(s-c)}

Δ = 12 ( 12 a ) ( 12 b ) ( 12 c ) \Delta=\sqrt{12\color{#20A900}{(12-a)(12-b)(12-c)}}

Δ = 12 ( 12 ) \Delta=\sqrt{12\color{#20A900}{(12)}}

Δ 2 = 12 2 = 144 {\Delta}^{2}={12}^2=144

Now, using Vieta's formula.

a b c = 420 \Rightarrow abc=420

a cos A + b cos B + c cos C = 8 × 144 420 = 96 35 \implies a\cos A+b\cos B+c\cos C=\dfrac{8×144}{420}=\dfrac{96}{35}

p + q + 10 = 96 + 35 + 10 = 141 \therefore p+q+10=96+35+10=\boxed{141}


Note: Δ = Area of triangle \Delta=\text{Area of triangle} .

Wow... I did the exact same way orally and would have posted the same solution line by line... :-p

Rishabh Jain - 4 years, 11 months ago

Log in to reply

:D ...Haha

A Former Brilliant Member - 4 years, 11 months ago

Did almost same way.here you see that sum of sin(2A)(cyc)=4abc /k^3

will jain - 4 years, 11 months ago

Nice approach. A typo last but one line last word. a "\" is missing. 96 35 \dfrac {96}{35} .

Niranjan Khanderia - 4 years, 11 months ago

Log in to reply

Thanks!.I have edited it.

A Former Brilliant Member - 4 years, 11 months ago
Chew-Seong Cheong
Jul 18, 2016

By Vieta's formula , we have { a + b + c = 24 a b + b c + c a = 180 a b c = 420 \begin{cases} a+b+c=24 \\ ab+bc+ca=180 \\ abc = 420 \end{cases}

By cosine rule, we have:

a 2 = b 2 + c 2 2 b c cos A cos A = b 2 + c 2 a 2 2 b c = a 2 + b 2 + c 2 2 a 2 2 a b c a = ( a + b + c ) 2 2 ( a b + b c + c a ) 2 a 2 2 a b c a = ( 108 a 2 ) a 420 a cos A = 108 a 2 a 4 420 cyc a cos A = cyc 108 a 2 a 4 420 = 108 ( 216 ) 22176 420 See Note. = 96 35 \begin{aligned} a^2 & = b^2+c^2 - 2bc \cos A \\ \implies \cos A & = \frac {b^2+c^2-a^2}{2bc} \\ & = \frac {a^2+b^2+c^2-2a^2}{\frac {2abc}a} \\ & = \frac {(a+b+c)^2-2(ab+bc+ca)-2a^2}{\frac {2abc}a} \\ & = \frac {(108-a^2)a}{420} \\ \implies a \cos A & = \frac {108a^2-a^4}{420} \\ \sum_{\text{cyc}} a \cos A & = \sum_{\text{cyc}} \frac {108a^2-a^4}{420} \\ & = \frac {108(\color{#3D99F6}{216})-\color{#3D99F6}{22176}}{420} & \small \color{#3D99F6}{\text{See Note.}} \\ & = \frac{96}{35} \end{aligned}

p + q + 10 = 96 + 35 + 10 = 141 \implies p+q+10 = 96+35+10 = \boxed{141}


Note: \color{#3D99F6}{\text{Note:}}

a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + b c + c a ) = 2 4 2 2 ( 180 ) = 216 a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ( a + b + c ) + 3 a b c = 24 ( 216 ) 180 ( 24 ) + 3 ( 420 ) = 2124 a 4 + b 4 + c 4 = ( a + b + c ) ( a 3 + b 3 + c 3 ) ( a b + b c + c a ) ( a 2 + b 2 + c 2 ) + a b c ( a + b + c ) = 24 ( 2124 ) 180 ( 216 ) + 420 ( 24 ) = 22176 \begin{aligned} a^2+b^2+c^2 & = (a+b+c)^2 - 2(ab+bc+ca) \\ & = 24^2 - 2(180) = \color{#3D99F6}{216} \\ a^3+b^3+c^3 & = (a+b+c)(a^2+b^2+c^2) - (ab+bc+ca)(a+b+c) + 3abc \\ & = 24(216) - 180(24) + 3(420) = 2124 \\ a^4+b^4+c^4 & = (a+b+c)(a^3+b^3+c^3) - (ab+bc+ca)(a^2+b^2+c^2) + abc(a+b+c) \\ & = 24(2124) - 180(216) + 420(24) = \color{#3D99F6}{22176} \end{aligned}

Nice solution! :)

A Former Brilliant Member - 4 years, 11 months ago

I too have used almost the same method.

Niranjan Khanderia - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...