1 4 + 1 2 + 1 1 + 2 4 + 2 2 + 1 2 + … + 2 0 1 5 4 + 2 0 1 5 2 + 1 2 0 1 5
If the value of the above can be expressed as B A for positive coprime integers ( A , B ) , submit the value of A + B as your answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Level 4 is too much for this sir !
You would not believe me I got my answer right in notebook right now but when I used Brilliant's Scratchpad I am getting the wrong answer. @Calvin Lin
Log in to reply
Thanks. It is a known bug that the scratchpad rounds off to 6 significant digits. We are working on fixing it.
Can you elaborate the Partial Fractions
T h a n k y o u v e r y m u c h U p v o t e d
Log in to reply
n 4 + n 2 + 1 n = ( n 2 + n + 1 ) ∗ ( n 2 − n + 1 ) n = n 2 + n + 1 C n + A + n 2 − n + 1 D n + B ∴ n = ( C n + A ) ( n 2 − n + 1 ) + ( D n + B ) ( n 2 + n + 1 ) ∴ E q u a t i n g c o e f f i c e n t o f c o n s t a n t t e r m A + B = 0 . ⟹ B = − A . . . . . ( ∗ ) ∴ E q u a t i n g c o e f f i c e n t o f n 3 t e r m C + D = 0 . . . . ( ∗ ∗ ) ∴ E q u a t i n g c o e f f i c e n t o f t e r m n , 1 = − A + B + C + D . ⟹ 1 = − A − A b y ( ∗ ) a n d ( ∗ ∗ ) . ∴ A = − 2 1 , a n d B = 2 1 . ∴ E q u a t i n g c o e f f i c e n t o f n 2 t e r m , 0 = A + B − C + D = 0 − C + D . ( ∗ ∗ ∗ ) ⟹ C + D = 0 b y ( ∗ ∗ ) , − C + D = 0 b y ( ∗ ∗ ∗ ) , ⟹ C = D = 0 . ⟹ ( n 2 + n + 1 ) ∗ ( n 2 − n + 1 ) n = 2 1 ∗ ( n 2 − n + 1 1 − n 2 + n + 1 1 ) . Sorry, I did not see Your comment earlier.
Exactly Same way
Let the sum be S ; then we have:
S = k = 1 ∑ 2 0 1 5 k 4 + k 2 + 1 k = k = 1 ∑ 2 0 1 5 ( k 2 − 1 ) ( k 4 + k 2 + 1 ) k ( k 2 − 1 ) = k = 1 ∑ 2 0 1 5 k 6 − 1 k ( k − 1 ) ( k + 1 ) = k = 1 ∑ 2 0 1 5 ( k 3 + 1 ) ( k 3 − 1 ) k ( k − 1 ) ( k + 1 ) = k = 1 ∑ 2 0 1 5 ( k 2 − k + 1 ) ( k 2 + k + 1 ) k = 2 1 k = 1 ∑ 2 0 1 5 ( k 2 − k + 1 1 − k 2 + k + 1 1 ) = 2 1 k = 1 ∑ 2 0 1 5 ( ( k − 2 1 ) 2 + 4 3 1 − ( k + 2 1 ) 2 + 4 3 1 ) = 2 1 ( k = 1 ∑ 2 0 1 5 ( k − 2 1 ) 2 + 4 3 1 − k = 2 ∑ 2 0 1 6 ( k − 2 1 ) 2 + 4 3 1 ) = 2 1 ( ( 1 − 2 1 ) 2 + 4 3 1 − ( 2 0 1 6 − 2 1 ) 2 + 4 3 1 ) = 2 1 ( 1 − ( 2 4 0 3 1 ) 2 + 4 3 1 ) = 2 1 ( 1 − 4 0 6 2 2 4 1 1 ) = 4 0 6 2 2 4 1 2 0 3 1 1 2 0
Since 4 0 6 2 2 4 1 is a prime, 2 0 3 1 1 2 0 is its coprime.
Therefore, A + B = 2 0 3 1 1 2 0 + 4 0 6 2 2 4 1 = 6 0 9 3 3 6 1
I too first did the same way but we can factor directly as under.
x 4 + x 2 + 1 = x 4 + 2 x 2 + 1 − x 2 = ( x 2 + 1 ) 2 − x 2 = . . . . . .
U p v o t e d
the general form is :
∑ n = 1 2 0 1 5 n 4 + n 2 + 1 n
the denominator can be factorized into :
n 4 + n 2 + 1 = ( n 2 + 1 ) 2 − n 2 = ( n 2 + n + 1 ) ( n 2 − n + 1 )
by using partial fractions:
∑ n = 1 2 0 1 5 ( n 2 + n + 1 ) ( n 2 − n + 1 ) n = 2 − 1 ∑ n = 1 2 0 1 5 ( n 2 + n + 1 1 − n 2 − n + 1 1 )
the first term can be manipulated as follows:
∑ n = 1 2 0 1 5 n 2 + n + 1 1 = ∑ n = 1 2 0 1 5 ( n + 1 ) 2 − n 1 = ∑ m = 2 2 0 1 6 m 2 − m + 1 1
l e t m = n + 1
since m,n are arbitrary variables, use n for both:
2 − 1 ( ∑ n = 2 2 0 1 6 n 2 − n + 1 1 − ∑ n = 1 2 0 1 5 n 2 − n + 1 1 ) = 2 − 1 ( 2 0 1 6 2 − 2 0 1 6 + 1 1 − 1 ) = 2 − 1 ( 4 0 6 2 2 4 1 1 − 1 ) = 4 0 6 2 2 4 1 2 0 3 1 1 2 0
note that at the previous equation all terms cancel each other except the terms at which n=2016, and n=1
so : A + B = 2 0 3 1 1 2 0 + 4 0 6 2 2 4 1 = 6 0 9 3 3 6 1
Problem Loading...
Note Loading...
Set Loading...
This is a simple telescopic series.
G e n e r a l t e r m i s n 4 + n 2 + 1 n B y p a r t i a l f r a c t i o n n 4 + n 2 + 1 n = 2 1 { n 2 − n + 1 1 − n 2 + n + 1 1 } n = 1 ∑ 2 0 1 5 n 4 + n 2 + 1 n = 2 1 ∗ n = 1 ∑ 2 0 1 5 { n 2 − n + 1 1 } − 2 1 ∗ n = 1 ∑ 2 0 1 5 { n 2 + n + 1 1 } = 2 1 { 1 + n = 1 ∑ 2 0 1 4 { n 2 + n + 1 1 } − n = 1 ∑ 2 0 1 4 { n 2 + n + 1 1 } − 2 0 1 5 2 + 2 0 1 5 + 1 2 0 1 5 } = 2 1 { 1 − 2 0 1 5 2 + 2 0 1 5 + 1 1 } = 2 1 { 1 − 4 0 6 2 2 4 1 1 } = 6 0 9 3 3 6 1