Inspired by Ikkyu San!

Algebra Level 4

1 1 4 + 1 2 + 1 + 2 2 4 + 2 2 + 1 + + 2015 201 5 4 + 201 5 2 + 1 \large{ \dfrac{1}{1^4 + 1^2 + 1} + \dfrac{2}{2^4 + 2^2 + 1} + \ldots + \dfrac{2015}{2015^4 + 2015^2 + 1} }

If the value of the above can be expressed as A B \dfrac{A}{B} for positive coprime integers ( A , B ) (A,B) , submit the value of A + B A+B as your answer.

Inspiration


The answer is 6093361.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

This is a simple telescopic series.

G e n e r a l t e r m i s n n 4 + n 2 + 1 B y p a r t i a l f r a c t i o n n n 4 + n 2 + 1 = 1 2 { 1 n 2 n + 1 1 n 2 + n + 1 } n = 1 2015 n n 4 + n 2 + 1 = 1 2 n = 1 2015 { 1 n 2 n + 1 } 1 2 n = 1 2015 { 1 n 2 + n + 1 } = 1 2 { 1 + n = 1 2014 { 1 n 2 + n + 1 } n = 1 2014 { 1 n 2 + n + 1 } 2015 201 5 2 + 2015 + 1 } = 1 2 { 1 1 201 5 2 + 2015 + 1 } = 1 2 { 1 1 4062241 } = 6093361 General ~term~ is~\dfrac n {n^4+n^2+1}\\ By~ partial~ fraction\\ \dfrac n {n^4+n^2+1}\\ =\dfrac 1 2 \left \{\dfrac 1 {n^2-n+1} ~-~\dfrac 1{n^2+n+1} \right \}\\ \displaystyle \sum_{n=1}^{2015} \dfrac n {n^4+n^2+1} \\ \displaystyle =\dfrac 1 2* \sum_{n=1}^{2015} \left \{\dfrac 1 {n^2-n+1} \right \}~-~\dfrac 1 2* \sum_{n=1}^{2015} \left \{\dfrac 1{n^2+n+1} \right \}\\ \displaystyle =\dfrac 1 2\left \{1+ \color{#3D99F6}{ \sum_{n=1}^{2014} \left \{\dfrac 1 {n^2+n+1} \right \}- \sum_{n=1}^{2014} \left \{\dfrac 1{n^2+n+1} \right \} }-\dfrac {2015}{2015^2+2015+1} \right \} \\= \dfrac 1 2\left \{1- \dfrac 1 {2015^2+ 2015+1} \right \} \\=\dfrac 1 2 \left \{1-\dfrac 1 {4062241} \right \} \\ =\Large \color{#D61F06}{6093361}

Level 4 is too much for this sir !

Venkata Karthik Bandaru - 5 years, 9 months ago

You would not believe me I got my answer right in notebook right now but when I used Brilliant's Scratchpad I am getting the wrong answer. @Calvin Lin

Department 8 - 5 years, 9 months ago

Log in to reply

Thanks. It is a known bug that the scratchpad rounds off to 6 significant digits. We are working on fixing it.

Calvin Lin Staff - 5 years, 9 months ago

Can you elaborate the Partial Fractions

T h a n k y o u v e r y m u c h U p v o t e d \color{#D61F06}{Thank \quad you \quad very \quad much} \quad \color{grey}{Upvoted}

Syed Baqir - 5 years, 9 months ago

Log in to reply

n n 4 + n 2 + 1 = n ( n 2 + n + 1 ) ( n 2 n + 1 ) = C n + A n 2 + n + 1 + D n + B n 2 n + 1 n = ( C n + A ) ( n 2 n + 1 ) + ( D n + B ) ( n 2 + n + 1 ) E q u a t i n g c o e f f i c e n t o f c o n s t a n t t e r m A + B = 0. B = A . . . . . ( ) E q u a t i n g c o e f f i c e n t o f n 3 t e r m C + D = 0.... ( ) E q u a t i n g c o e f f i c e n t o f t e r m n , 1 = A + B + C + D . 1 = A A b y ( ) a n d ( ) . A = 1 2 , a n d B = 1 2 . E q u a t i n g c o e f f i c e n t o f n 2 t e r m , 0 = A + B C + D = 0 C + D . ( ) C + D = 0 b y ( ) , C + D = 0 b y ( ) , C = D = 0. n ( n 2 + n + 1 ) ( n 2 n + 1 ) = 1 2 ( 1 n 2 n + 1 1 n 2 + n + 1 ) . Sorry, I did not see Your comment earlier. \dfrac n {n^4+n^2+1}=\color{#D61F06}{\dfrac n {(n^2+n+1)*(n^2-n+1)} }\\ =\dfrac {Cn+A}{n^2+n+1} +\dfrac {Dn+B}{n^2-n+1 } \\ \therefore~ n= (Cn+A) (n^2-n+1)+ (Dn+B)(n^2+n+1) \\ \therefore ~Equating~coefficent~of~constant~term~ A+B=0.\\ \implies~B= - A.....(*)\\ \therefore ~Equating~coefficent~of~n^3~term~ C+D=0....(**)\\ \therefore~Equating~coefficent~of~term~n,~~~~~1=-A+B+C+D.\\ \implies~1= - A - A~~by~(*)\ ~and~(**).\\ \therefore~A=-\dfrac 1 2 ~~,~~and ~~B=\dfrac 1 2 .\\ \therefore ~Equating~coefficent~of~n^2~term ,~~~0=A+B-C+D =0-C+D.(***)\\ \implies~C+D=0~~by (**),~~-C+D=0~~by (***),~~\implies~C=D=0.\\ \implies~~\color{#D61F06}{\dfrac n {(n^2+n+1)*(n^2-n+1)} }\\ =\dfrac 1 2 * \left( \dfrac1{ n^2-n+1} - \dfrac 1 { n^2+n+1} \right ) . \\ \text{Sorry, I did not see Your comment earlier.}

Niranjan Khanderia - 5 years, 9 months ago

Log in to reply

T h a n k y o u ! ! ! \color{grey}{Thank \quad you \quad !!!}

Syed Baqir - 5 years, 9 months ago

Exactly Same way

Kushagra Sahni - 5 years, 9 months ago

Let the sum be S S ; then we have:

S = k = 1 2015 k k 4 + k 2 + 1 = k = 1 2015 k ( k 2 1 ) ( k 2 1 ) ( k 4 + k 2 + 1 ) = k = 1 2015 k ( k 1 ) ( k + 1 ) k 6 1 = k = 1 2015 k ( k 1 ) ( k + 1 ) ( k 3 + 1 ) ( k 3 1 ) = k = 1 2015 k ( k 2 k + 1 ) ( k 2 + k + 1 ) = 1 2 k = 1 2015 ( 1 k 2 k + 1 1 k 2 + k + 1 ) = 1 2 k = 1 2015 ( 1 ( k 1 2 ) 2 + 3 4 1 ( k + 1 2 ) 2 + 3 4 ) = 1 2 ( k = 1 2015 1 ( k 1 2 ) 2 + 3 4 k = 2 2016 1 ( k 1 2 ) 2 + 3 4 ) = 1 2 ( 1 ( 1 1 2 ) 2 + 3 4 1 ( 2016 1 2 ) 2 + 3 4 ) = 1 2 ( 1 1 ( 4031 2 ) 2 + 3 4 ) = 1 2 ( 1 1 4062241 ) = 2031120 4062241 \begin{aligned} S & = \sum_{k=1}^{2015} \frac{k}{k^4+k^2+1} = \sum_{k=1}^{2015} \frac{k(k^2-1)}{(k^2-1)(k^4+k^2+1)} = \sum_{k=1}^{2015} \frac{k(k-1)(k+1)}{k^6-1} \\ & = \sum_{k=1}^{2015} \frac{k(k-1)(k+1)}{(k^3+1)(k^3-1)} = \sum_{k=1}^{2015} \frac{k}{(k^2-k+1)(k^2+k+1)} \\ & = \frac{1}{2} \sum_{k=1}^{2015} \left(\frac{1}{k^2-k+1} - \frac{1}{k^2+k+1} \right) \\ & = \frac{1}{2} \sum_{k=1}^{2015} \left(\frac{1}{\left(k-\frac{1}{2}\right)^2+\frac{3}{4}} - \frac{1}{\left(k+\frac{1}{2}\right)^2+\frac{3}{4}} \right) \\ & = \frac{1}{2} \left( \sum_{k=1}^{2015} \frac{1}{\left(k-\frac{1}{2}\right)^2+\frac{3}{4}} - \sum_{k=2}^{2016} \frac{1}{\left(k-\frac{1}{2}\right)^2+\frac{3}{4}} \right) \\ & = \frac{1}{2} \left(\frac{1}{\left(1-\frac{1}{2}\right)^2+\frac{3}{4}} - \frac{1}{\left(2016-\frac{1}{2}\right)^2+\frac{3}{4}} \right) \\ & = \frac{1}{2} \left(1 - \frac{1}{\left(\frac{4031}{2}\right)^2+\frac{3}{4}} \right) = \frac{1}{2} \left(1 - \frac{1}{4062241} \right) = \frac{2031120}{4062241} \end{aligned}

Since 4062241 4062241 is a prime, 2031120 2031120 is its coprime.

Therefore, A + B = 2031120 + 4062241 = 6093361 A+B = 2031120 + 4062241 = \boxed{6093361}

I too first did the same way but we can factor directly as under.

x 4 + x 2 + 1 = x 4 + 2 x 2 + 1 x 2 = ( x 2 + 1 ) 2 x 2 = . . . . . . x^4+x^2+1=x^4+2x^2+1-x^2=(x^2+1)^2-x^2=......

Niranjan Khanderia - 5 years, 9 months ago

Log in to reply

I see. Thanks.

Chew-Seong Cheong - 5 years, 9 months ago

U p v o t e d \color{grey}{Upvoted}

Syed Baqir - 5 years, 9 months ago
Karim Mohamed
Sep 3, 2015

the general form is :

n = 1 2015 n n 4 + n 2 + 1 \sum _{ n=1 }^{ 2015 }{ \frac { n }{ { n }^{ 4 }+{ n }^{ 2 }+1 } }

the denominator can be factorized into :

n 4 + n 2 + 1 = ( n 2 + 1 ) 2 n 2 = ( n 2 + n + 1 ) ( n 2 n + 1 ) { n }^{ 4 }+{ n }^{ 2 }+1={ \left( { n }^{ 2 }+1 \right) }^{ 2 }-{ n }^{ 2 }=\left( { n }^{ 2 }+n+1 \right) \left( { n }^{ 2 }-n+1 \right)

by using partial fractions:

n = 1 2015 n ( n 2 + n + 1 ) ( n 2 n + 1 ) = 1 2 n = 1 2015 ( 1 n 2 + n + 1 1 n 2 n + 1 ) \sum _{ n=1 }^{ 2015 }{ \frac { n }{ \left( { n }^{ 2 }+n+1 \right) \left( { n }^{ 2 }-n+1 \right) } } =\frac { -1 }{ 2 } \sum _{ n=1 }^{ 2015 }{ \left( \frac { 1 }{ { n }^{ 2 }+n+1 } -\frac { 1 }{ { n }^{ 2 }-n+1 } \right) }

the first term can be manipulated as follows:

n = 1 2015 1 n 2 + n + 1 = n = 1 2015 1 ( n + 1 ) 2 n = m = 2 2016 1 m 2 m + 1 \sum _{ n=1 }^{ 2015 }{ \frac { 1 }{ { n }^{ 2 }+n+1 } } =\sum _{ n=1 }^{ 2015 }{ \frac { 1 }{ { \left( n+1 \right) }^{ 2 }-n } } =\sum _{ m=2 }^{ 2016 }{ \frac { 1 }{ { m }^{ 2 }-m+1 } }

l e t m = n + 1 let\quad m=n+1

since m,n are arbitrary variables, use n for both:

1 2 ( n = 2 2016 1 n 2 n + 1 n = 1 2015 1 n 2 n + 1 ) = \frac { -1 }{ 2 } \left( \sum _{ n=2 }^{ 2016 }{ \frac { 1 }{ { n }^{ 2 }-n+1 } } -\sum _{ n=1 }^{ 2015 }{ \frac { 1 }{ { n }^{ 2 }-n+1 } } \right) = 1 2 ( 1 2016 2 2016 + 1 1 ) = \frac { -1 }{ 2 } \left( \frac { 1 }{ { 2016 }^{ 2 }-2016+1 } -1 \right) = 1 2 ( 1 4062241 1 ) = 2031120 4062241 \frac { -1 }{ 2 } \left( \frac { 1 }{ 4062241 } -1 \right) =\frac { 2031120 }{ 4062241 }

note that at the previous equation all terms cancel each other except the terms at which n=2016, and n=1

so : A + B = 2031120 + 4062241 = 6093361 A+B=2031120+4062241=\boxed { 6093361 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...