Inspired by Jake Lai

Calculus Level 5

0 π / 2 ( sin x ) ln ( cos x ) ln ( sin x ) d x = A B π C D ln E \int _{ 0 }^{ \pi/2 }{ (\sin x) \ln { \left( \cos {x} \right) } \ln { \left( \sin {x} \right) } \, dx } =A-\frac{B\pi ^C}{D}-\ln {E}

Where A , B , C , D , E A,B,C,D, E are positive integers, E E is not a perfect power, and gcd ( B , D ) = 1 \gcd{(B,D)}=1 .

Find the value of A + B + C + D + E A+B+C+D+E


Inspiration .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hassan Abdulla
Aug 3, 2019

References:

0 π / 2 2 sin 2 x 1 ( θ ) cos 2 y 1 ( θ ) d θ = B ( x , y ) 0 π / 2 4 sin 2 x 1 ( θ ) cos 2 y 1 ( θ ) ln ( sin ( θ ) ) d θ = d d x B ( x , y ) 0 π / 2 8 sin 2 x 1 ( θ ) cos 2 y 1 ( θ ) ln ( sin ( θ ) ) ln ( cos ( θ ) ) d θ = d d x d y B ( x , y ) 0 π / 2 sin ( θ ) ln ( sin ( θ ) ) ln ( cos ( θ ) ) d θ = 1 8 d d x d y B ( x , y ) x = 1 , y = 1 / 2 0 π / 2 sin ( θ ) ln ( sin ( θ ) ) ln ( cos ( θ ) ) d θ = 1 8 ( 16 8 ln ( 2 ) π 2 ) = 2 ln ( 2 ) π 2 8 \begin{aligned} &\int_0^{\pi/2} 2 \sin^{2x-1}(\theta) \cos^{2y-1}(\theta) d \theta &&= B(x,y)\\ &\int_0^{\pi/2} 4 \sin^{2x-1}(\theta) \cos^{2y-1}(\theta) \ln(\sin(\theta)) d \theta &&= \frac{d}{dx} B(x,y)\\ &\int_0^{\pi/2} 8 \sin^{2x-1}(\theta) \cos^{2y-1}(\theta) \ln(\sin(\theta)) \ln(\cos(\theta)) d \theta &&= \frac{d}{dx\, dy} B(x,y)\\ &\int_0^{\pi/2} \sin(\theta) \ln(\sin(\theta)) \ln(\cos(\theta)) d \theta &&= \frac{1}{8} {\color{#D61F06}\left . \frac{d}{dx\, dy} B(x,y) \right |_{x=1,y=1/2}}\\ &\int_0^{\pi/2} \sin(\theta) \ln(\sin(\theta)) \ln(\cos(\theta)) d \theta &&= \frac{1}{8} {\color{#D61F06}(16 - 8\ln(2)-\pi^2)} = 2 - \ln(2) - \frac{\pi^2}{8}\\ \end{aligned}

d d x d y B ( x , y ) = B ( x , y ) [ ( ψ ( x ) ψ ( x + y ) ) ( ψ ( y ) ψ ( x + y ) ) ψ ( x + y ) ] d d x d y B ( x , y ) x = 1 , y = 1 / 2 = B ( 1 , 1 / 2 ) [ ( ψ ( 1 ) ψ ( 3 / 2 ) ) ( ψ ( 1 / 2 ) ψ ( 3 / 2 ) ) ψ ( 3 / 2 ) ] d d x d y B ( x , y ) x = 1 , y = 1 / 2 = 2 [ ( γ + γ + 2 ln ( 2 ) 2 ) ( ψ ( 1 / 2 ) ψ ( 1 / 2 ) 2 ) ( π 2 2 4 ) ] d d x d y B ( x , y ) x = 1 , y = 1 / 2 = 16 8 ln ( 2 ) π 2 { \color{#D61F06}\begin{aligned} &\frac{d}{dx\, dy} B(x,y) &&=B(x,y)\left [ (\psi(x)-\psi(x+y))(\psi(y)-\psi(x+y)) - \psi^{'}(x+y) \right ]\\ & \left . \frac{d}{dx\, dy} B(x,y) \right |_{x=1,y=1/2} &&=B(1,1/2)\left [ (\psi(1)-\psi(3/2))(\psi(1/2)-\psi(3/2)) - \psi^{'}(3/2) \right ]\\ & \left . \frac{d}{dx\, dy} B(x,y) \right |_{x=1,y=1/2} &&=2\left [ (- \gamma +\gamma+2 \ln(2) - 2)(\psi(1/2)-\psi(1/2) - 2) - (\frac{\pi^2}{2} - 4) \right ]\\ & \left . \frac{d}{dx\, dy} B(x,y) \right |_{x=1,y=1/2} &&=16 - 8\ln(2)-\pi^2 \end{aligned}}

ψ ( 1 ) = γ ψ ( 1 / 2 ) = γ 2 ln ( 2 ) ψ ( x + 1 ) = ψ ( x ) + 1 x ψ ( 3 / 2 ) = ψ ( 1 / 2 + 1 ) = ψ ( 1 / 2 ) + 2 ψ ( 1 x ) ψ ( x ) = π cot ( π x ) ψ ( 1 x ) ψ ( x ) = π 2 csc 2 ( π x ) ψ ( 1 1 / 2 ) + ψ ( 1 / 2 ) = π 2 csc 2 ( π / 2 ) ψ ( 1 / 2 ) = π 2 2 ψ ( x + 1 ) = ψ ( x ) + 1 x ψ ( x + 1 ) = ψ ( x ) 1 x 2 ψ ( 3 / 2 ) = ψ ( 1 / 2 + 1 ) = ψ ( 1 / 2 ) 4 = π 2 2 4 {\color{#3D99F6}\begin{aligned} &\psi(1)= - \gamma\\ &\psi(1/2)= - \gamma- 2\ln(2)\\ &\psi(x+1)= \psi(x) + \frac{1}{x}\Rightarrow \psi(3/2)=\psi(1/2+1)= \psi(1/2) + 2 \\ &\psi(1-x) - \psi(x) = \pi \cot(\pi x)\Rightarrow - \psi(1-x)^{'} - \psi(x)^{'} = - \pi^2 \csc^2(\pi x) \\ & \Rightarrow \psi(1-1/2)^{'} + \psi(1/2)^{'} = \pi^2 \csc^2(\pi/2)\Rightarrow \psi(1/2)^{'} = \frac{\pi^2}{2} \\ &\psi(x+1)= \psi(x) + \frac{1}{x}\Rightarrow \psi(x+1)^{'}= \psi(x)^{'} - \frac{1}{x^2}\\ & \Rightarrow \psi(3/2)^{'} = \psi(1/2+1)^{'}= \psi(1/2)^{'} - 4 = \frac{\pi^2}{2} - 4 \end{aligned}}

Great question.I enjoyed solving it.I got the answer as A=2,B=1,C=2,D=8 and E=2

Thank You @Indraneel Mukhopadhyaya . When I tried and didn't go I clicked discuss solution. But when I saw your answer and age I got a blow and I said to my self that if he can then I can also solve which motivated me to solve such a nice problem.

Aakash Khandelwal - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...