A Squared Riemann Zeta

Calculus Level 5

n = 1 ζ 2 ( 2 n + 1 ) B 2 n 2 \large \sum_{n=1}^\infty \dfrac{\zeta^2(-2n+1)}{B_{2n}^2}

If the value of the series above is equal to π A B \dfrac{\pi^A}{B} , where A A and B B are integers, find A + B A+B .

Notations

  • ζ ( ) \zeta(\cdot) denote the Riemann zeta function .

  • B n B_n denote the n th n^\text{th} Bernoulli number.


The answer is 26.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aditya Kumar
Jan 14, 2016

We use the identity: ζ ( n ) = B n + 1 n + 1 \zeta \left( -n \right) =\frac { -{ B }_{ n+1 } }{ n+1 } \\

Therefore, on substituting -n as -2n+1, we get: ζ ( 2 n + 1 ) B 2 n = 1 2 n \frac { \zeta \left( -2n+1 \right) }{ { B }_{ 2n } } =\frac { -1 }{ 2n }

Therefore, on taking summation we get, n = 1 ( ζ ( 2 n + 1 ) B 2 n ) 2 = n = 1 ( 1 2 n ) 2 = ζ ( 2 ) 4 = π 2 24 \sum _{ n=1 }^{ \infty }{ { \left( \frac { \zeta \left( -2n+1 \right) }{ { B }_{ 2n } } \right) }^{ 2 } } =\sum _{ n=1 }^{ \infty }{ { \left( \frac { 1 }{ 2n } \right) }^{ 2 } } =\frac { \zeta \left( 2 \right) }{ 4 } =\frac { { \pi }^{ 2 } }{ 24 }

+1. this is what i intended!

Aareyan Manzoor - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...